
™

BC - ABAP Dictionary

H
E

L
P

.B
C

D
W

B
D

IC

Re lease 4 .6B

BC - ABAP Dictionary SAP AG

2 December 1999

Copyright

© Copyright 2000 SAP AG. All rights reserved.

No part of this brochure may be reproduced or transmitted in any form or for any purpose without
the express permission of SAP AG. The information contained herein may be changed without
prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word® and SQL Server® are registered trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation, California, USA.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server
TM

 are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of The Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium, Laboratory for Computer Science NE43-358, Massachusetts Institute of
Technology, 545 Technology Square, Cambridge, MA 02139.

JAVA® is a registered trademark of Sun Microsystems, Inc. , 901 San Antonio Road, Palo Alto,
CA 94303 USA.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, mySAP.com, mySAP.com Marketplace, mySAP.com Workplace, mySAP.com
Business Scenarios, mySAP.com Application Hosting, WebFlow, R/2, R/3, RIVA, ABAP, SAP
Business Workflow, SAP EarlyWatch, SAP ArchiveLink, BAPI, SAPPHIRE, Management
Cockpit, SEM, are trademarks or registered trademarks of SAP AG in Germany and in several
other countries all over the world. All other products mentioned are trademarks or registered
trademarks of their respective companies.

 SAP AG BC - ABAP Dictionary

December 1999 3

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Tip

BC - ABAP Dictionary SAP AG

4 December 1999

Contents

BC - ABAP Dictionary...9
ABAP Dictionary .. 10
Tables.. 13
Table Fields .. 14

Reference Fields and Reference Tables.. 15
Includes .. 16
Named Includes.. 18

Foreign Keys .. 19
Generic and Constant Foreign Keys .. 22
Semantic Attributes of Foreign Keys .. 24

Cardinality.. 25
Type of Foreign Key Fields ... 26

Text Tables... 27
Multi-Structured Foreign Keys .. 29

Technical Settings ... 30
Data Class .. 31
Size Category ... 32
Buffering Permission .. 33
Buffering Types .. 34

Full Buffering ... 35
Generic Buffering .. 37
Single-Record Buffering .. 39

Logging... 41
Converting Pooled Tables to Transparent Tables.. 42

Buffering Database Tables ... 43
Local Buffer Synchronization.. 46

Example for Buffer Synchronization.. 48
Which Tables should be Buffered? .. 53
Which Accesses Proceed Directly to the Database? ... 54
How are Table Buffers Implemented Technically?... 55

Single-Record Table Buffers ... 56
Generic and Full Table Buffers ... 58

How can you Analyze the Buffer Quality? .. 60
Indexes.. 61

What to Keep in Mind for Secondary Indexes.. 63
How to Check if an Index is Used .. 65
Unique Indexes... 66
Index IDs... 67

Customizing Includes.. 68
Append Structures .. 69
Creating Tables.. 71

Creating Foreign Keys.. 74
Maintaining Technical Settings... 76
Creating Secondary Indexes .. 77
Delivery Class... 78

 SAP AG BC - ABAP Dictionary

December 1999 5

Activation Type ... 80
Making Changes to Tables ... 81

Adding an Append Structure .. 82
Inserting an Include .. 83
Inserting New Fields ... 85

Initial Values .. 86
Deleting Existing Field .. 88
Changing Data Types and Lengths of Existing Fields ... 89
Changing the Table Category... 90
Moving Fields ... 91
Copying Fields from Another Table.. 92
Copying Fields from an Entity Type ... 93
Deleting Tables... 94

Views... 95
Join, Projection and Selection ... 97

Inner Join and Outer Join ... 101
Foreign Key Relationship and Join Condition .. 102

Maintenance Status ... 103
Time-Dependent Key Components .. 104
Inserts with Database Views .. 105

Database Views.. 106
Includes in Database Views ... 108
Technical Settings of a Database View.. 109

Projection Views.. 110
Help Views.. 111
Maintenance Views.. 112

Restrictions for Maintenance and Help Views.. 114
Creating Views ... 115

Creating a Database View.. 116
Creating Help Views ... 118
Creating Projection Views .. 120
Creating Maintenance Views.. 121

Maintenance Attribute of a View Field... 123
Delivery Class of a Maintenance View.. 124

Maintaining Selection Conditions of Views... 125
Deleting Views ... 126
Example for Views ... 127
Types... 130
Data Elements .. 132

Creating Data Elements ... 134
Documentation and Docu Status.. 136
Field Labels .. 137

Structures... 138
Creating Structures... 140
Named Includes.. 142

Table Types .. 143
Creating Table Types ... 145
Key Definition of a Table Type ... 147
Access Mode .. 148

BC - ABAP Dictionary SAP AG

6 December 1999

Key Category.. 149
Generic Table Types .. 150
Ranges Table Types .. 151
Creating a Ranges Table Type .. 152

Deleting Types ... 154
Domains.. 155
Fixed Values... 157
Value Table... 158
Input and Output Conversions... 159
Creating Domains .. 162
Changing Domains .. 164
Deleting Domains .. 165
Search Helps .. 166
Structure of an Elementary Search Help... 168
Structure of a Collective Search Help ... 172
Append Search Helps.. 174
Attaching Search Helps to Screen Fields ... 176

Attaching to Data Elements.. 177
Attaching to Check Tables ... 179
Attaching to a Table Field or Structure Field .. 181
Attaching to Screen Fields.. 183
Hierarchy of the Search Help Call .. 184
Value Transport for Input Helps ... 185

Creating Elementary Search Helps.. 187
Dialog Types... 190
Hot Keys ... 191
Default Values for Search Help Parameters .. 192

Creating Collective Search Helps .. 193
Creating an Append Search Help... 195
Search Help Exit .. 196
Example for Search Helps .. 198
Lock Objects .. 202
Lock Mode .. 205
Function Modules for Lock Requests ... 206
Conditions Required of Foreign Keys ... 209
Lock Mechanism.. 210

Local Lock Containers .. 212
Creating Lock Objects... 213
Deleting Lock Objects ... 215
Example for Lock Objects... 216
Adjusting Database Structures .. 219
Conversion Process .. 221
Conversion Problems.. 226
Continuing Terminated Conversions .. 228
Finding Terminated Conversions .. 229
Activation.. 230
Runtime Objects .. 232

 SAP AG BC - ABAP Dictionary

December 1999 7

Mass Activation ... 233
Activating Objects in the Background .. 234
Data Types in the ABAP Dictionary ... 235
Mapping of the ABAP Data Types.. 238
The Database Utility .. 240
Editing Tables and Indexes in the Database... 242
Editing Views in the Database.. 244
Editing Matchcodes in the Database ... 245
Editing Pools and Clusters in the Database ... 247
Processing Types .. 248
Storage Parameters... 249
Displaying Requests for Mass Processing... 251
Scheduling Jobs for Mass Processing.. 253
Displaying Logs for Mass Processing... 254
Displaying Temporary Tables without Restart Logs ... 255
Pooled and Cluster Tables.. 256
Creating Table Pools/Table Clusters ... 259
Deleting Table Pools/Table Clusters ... 260
Creating Pooled Tables/Cluster Tables... 261
Changing Pooled Tables/Cluster Tables... 262
Matchcodes .. 263
Update Types ... 265
Special Features of Program-Driven Matchcodes ... 267
Creating Matchcodes .. 268

Defining Attributes of Matchcode Objects .. 269
Selecting Secondary Tables of Matchcode Objects... 270
Selecting Fields of Matchcode Objects .. 271
Activating Matchcode Objects .. 272
Defining Attributes of Matchcode IDs ... 273
Selecting Secondary Tables of Matchcode IDs ... 275
Selecting Fields of Matchcode IDs ... 276
Defining Selection Conditions of Matchcode IDs ... 278
Activating Matchcode IDs... 279
Building Matchcode Data.. 280
Displaying the Built Matchcode Data.. 281
Creating Matchcode Indexes.. 282
Function Modules for Matchcode IDs... 284

Changing Matchcodes .. 285
Changing Matchcode Objects .. 286
Changing Matchcode IDs ... 288
Converting to Transparent Matchcodes ... 290
Effect of Conversion on Transparent IDs ... 291
Deactivating Matchcode IDs... 292
Deleting Matchcode IDs ... 293
Deleting Matchcode Objects .. 294

Flight Model.. 295

BC - ABAP Dictionary SAP AG

8 December 1999

 SAP AG BC - ABAP Dictionary

BC - ABAP Dictionary

December 1999 9

BC - ABAP Dictionary
The ABAP Dictionary centrally describes and manages all the data definitions used in the
system. The ABAP Dictionary is completely integrated in the ABAP Development Workbench. All
the other components of the Workbench can actively access the definitions stored in the ABAP
Dictionary.

The ABAP Dictionary supports the definition of user-defined types (data elements, structures and
table types). You can also define the structure of database objects (tables, indexes and views) in
the ABAP Dictionary. These objects can then be automatically created in the database with this
definition. The ABAP Dictionary also provides tools for editing screen fields, for example for
assigning a field an input help (F4 help).

Database objects

Table

DB table

Tools

Screen

Poss. values

F4

Type definitions

Structure

Table type
Data element

The most important object types in the ABAP Dictionary are tables, views, types (data elements,
structures, table types), domains, search helps and lock objects.

BC - ABAP Dictionary SAP AG

ABAP Dictionary

10 December 1999

ABAP Dictionary
Purpose
Data definitions (metadata) are created and managed in the ABAP Dictionary. The ABAP
Dictionary permits a central description of all the data used in the system without redundancies.
New or modified information is automatically provided for all the system components. This
ensures data integrity, data consistency and data security.

You can create the corresponding objects (tables or views) in the underlying relational database
using these data definitions. The ABAP Dictionary therefore describes the logical structure of the
objects used in application development and shows how they are mapped to the underlying
relational database in tables or views.

The ABAP Dictionary also provides standard functions for editing fields on the screen, for
example for assigning a screen field an input help.

What Information is Stored in the ABAP Dictionary?
The most important object types in the ABAP Dictionary are tables, views, types, domains,
search helps and lock objects.

Tables [Page 13] are defined in the ABAP Dictionary independently of the database. A table
having the same structure is then created from this table definition in the underlying database.

Views [Page 95] are logical views on more than one table. The structure of the view is defined in
the ABAP Dictionary. A view on the database can then be created from this structure.

Types [Page 130] are used in ABAP program. The structure of a type can be defined globally in
ABAP programs. Changes to a type automatically take effect in all the programs using the type.

Lock objects [Page 202] are used to synchronize access to the same data by more than one
user. Function modules that can be used in application programs are generated from the
definition of a lock object in the ABAP Dictionary.

Different fields having the same technical type can be combined in domains [Page 155]. A
domain defines the value range of all table fields and structure components that refer to this
domain.

The ABAP Dictionary also contains the information displayed with the F1 and F4 help for a field
in an input template. The documentation about the field is created for a data element [Page 132]
that describes the meaning of the contents of a table field. The list of possible input values that
appears for the input help is created by a foreign key [Page 19] or a search help [Page 166].

Integration in the ABAP Development Workbench
The ABAP Dictionary is completely integrated in the ABAP Development Workbench. The R/3
System works interpretatively, permitting the ABAP Dictionary to be actively integrated in the
development environment. Instead of the original objects, the interpreters see only internal
representations of these objects.

These internal representations are adjusted automatically when the system finds that changes
have been made in the ABAP Dictionary. This ensures that the screen and ABAP interpreters,
input help, database interface, and development tools always access current data.

 SAP AG BC - ABAP Dictionary

ABAP Dictionary

December 1999 11

The following ABAP program lists the airline carriers (see Flight model [Page 295])
and carrier IDs contained in table SCARR.

DATA: SCARR_TAB TYPE SCARR.

SELECT * INTO SCARR_TAB FROM SCARR.

WRITE: / SCARR_TAB-CARRID, SCARR_TAB-CARRNAME.

ENDSELECT.

Only structure SCARR_TAB is declared in the program. All the information about this
structure, such as the field names, data types and field lengths, are copied from table
SCARR, which is defined in the ABAP Dictionary. This information about table
SCARR is called from the ABAP Dictionary when the program is generated.

This means that the source text of the program need not be adjusted when a change
is made to table SCARR, for example when the length of a table field is changed.
The next time the program is called, the system automatically determines that the
structure of table SCARR has changed. The program is simply regenerated, thereby
retrieving up-to-date information about table SCARR from the ABAP Dictionary.

 ´Development environment ´Development environment

 Runtime environment of the application Runtime environment of the application

ABAP
Interpreter

Dialog
Control Interfaces Screen

Interpreter

ABAP
Tools

Data
Modeler

Screen
Painter

ABAP
Dictionary

When you work on development projects, objects of the ABAP Dictionary can be changed any
number of times before being activated [Page 230] and made available to the operative
components of the system. Objects can have both an active and an inactive version in the ABAP
Dictionary at the same time.

Inactive ABAP Dictionary objects have no effect on the runtime system (ABAP processor,
database interface). This permits greater changes to several objects without impairing the

BC - ABAP Dictionary SAP AG

ABAP Dictionary

12 December 1999

executability of the system. The objects can only be activated together when they have all been
changed.

 SAP AG BC - ABAP Dictionary

Tables

December 1999 13

Tables
Tables can be defined independently of the database in the ABAP Dictionary. The fields of the
table are defined with their (database-independent) data types and lengths.

When the table is activated, a physical table definition is created in the database for the table
definition stored in the ABAP Dictionary. The table definition is translated from the ABAP
Dictionary to a definition of the particular database.

Activation
program and
DB UTILITY

...T3T2 T1 Tn

T1
T2

T3
Tn

DB

Database-independent Definition of the
Tables in the ABAP Dictionary

Definition of the tables
in the database

A table definition in the ABAP Dictionary contains the following components:

• Table fields [Page 14] define the field names and data types of the fields contained in the
table

• Foreign keys [Page 19] define the relationships between the table and other tables.

• Technical settings [Page 30] control how the table should be created in the database.

• Indexes [Page 61]: To speed up data selection, secondary indexes can be created for
the table

The customer can modify SAP tables with append structures [Page 69] and customizing includes
[Page 68]. This kind of modification ensures that the customer enhancements are automatically
merged with the new versions of the SAP tables when there is a release upgrade.

See also:
Creating Tables [Page 71]

Making Changes to Tables [Page 81]

BC - ABAP Dictionary SAP AG

Table Fields

14 December 1999

Table Fields
You must define the following for a table field in the ABAP Dictionary:

• Field name: The field name can have a maximum of 16 places and may contain letters,
digits and underscores. The field name must begin with a letter.

• Key flag: determines whether the field should belong to the table key.

• Field type: data type of the field in the ABAP Dictionary.

• Field length: number of valid places in the field.

• Decimal places: number of places after the decimal point, specifying numeric data
types.

• Short text: short text describing the meaning of the field.

You can also include [Page 16] the fields of a structure in the table.

Assignment of the Data Type, Field Length and Short Text
You can assign the data type [Page 235], length and short text in different ways:

• You directly assign the field a data type, field length (and if necessary decimal places)
and short text in the table definition.

• You can assign the field a data element [Page 132]. The data type, field length (and
decimal places) are determined from the domain of the data element. The short
description of the data element is assigned to the field as a short text.

Other Assignment Options
• Check table: An input check for the field can be defined with a foreign key [Page 19].

This input check appears on all the screens in which the field is used.

• Search help assignment: A search help [Page 166] can be assigned to a field. This
search help defines the input help flow on all the screens in which the field is used.

• Reference field and reference table [Page 15]: You must specify the table field in which
the corresponding unit of measure or currency can be found for fields containing
quantities (data type QUAN) or currency amounts (data type CURR).

See also:
Creating Tables [Page 71]

 SAP AG BC - ABAP Dictionary

Reference Fields and Reference Tables

December 1999 15

Reference Fields and Reference Tables
You must specify a reference table for fields containing quantities (data type QUAN) or currency
amounts (data type CURR).

This reference table must contain a field with the format for the currency key (data type CUKY) or
unit of measure (data type UNIT). This field is called the reference field of the output field. The
reference field can also reside in the table itself.

A field is only assigned to the reference field at program runtime. For example, if a field is filled
with currency amounts, the corresponding currency is determined from the assigned reference
field, that is the value entered in this field at the moment defines the currency.

Table T1

Field 1 Field 2 (CURR) Field 3

Reference table T2

Field 4 Field 5 (CUKY) Field 6 Field 7

Reference field

Runtime
T1-Field 2

T2-Field 5

1,500.00

DEM

Table SBOOK in the flight model [Page 295] contains all the flight bookings made by
customers. Field FORCURAM contains the price of the booking in the customer’s
currency. Field FORCURKEY of table SBOOK contains the corresponding currency
key for this price. SBOOK is therefore the reference table for field FORCURAM and
FORCURKEY is the reference field for field FORCURAM.

BC - ABAP Dictionary SAP AG

Includes

16 December 1999

Includes
In addition to listing the individual fields, you can also include the fields of another structure in
tables [Page 13] and structures [Page 138]. Individual fields and includes can be mixed as
required.

Database

F2 F3 F4 F5F1

F2 F5F1 F4F3

F4F3

Table

Structure

included

When an include is changed, all the tables and structures that include it are automatically
adjusted.

Structure A was included in table B. A new field is inserted in structure A. When
structure A is activated, table B is adjusted to this change, that is the new field is also
inserted there.

You can assign the include a group name [Page 142] with which the group of fields in the include
can be addressed as a whole in ABAP programs.

Includes can also be nested, that is structure A includes structure B which in turn includes
another structure C, etc. The maximum nesting depth is limited to nine. The maximum length of a
path of nested includes in a table or structure is therefore nine (the table/structure itself not
included).

 SAP AG BC - ABAP Dictionary

Includes

December 1999 17

Table/structure

Include U1

Include U2

Include U8

Include U9

U1

U2

U3

U9

Maximum
depth = 9

Only flat structures [Page 138] can be included. In a flat structure, every field either refers to a
data element or is directly assigned a data type, length and possibly decimal places.

Only structures may be included in a table. Tables, structures and views may be included in a
structure. However, the path of nested includes may only contain one table.

Table TAB1 includes structure STRUCT1, which in turn includes structure
STRUCT2. The path of the nested includes here only contains table TAB1. It is also
possible to include TAB1 in a further structure STRUCT0,

but no other table TAB2 may be included in TAB1 since in this case a path of nested
includes would contain two tables (TAB1 and TAB2).

See also:
Inserting an Include [Page 83]

BC - ABAP Dictionary SAP AG

Named Includes

18 December 1999

Named Includes
If an include [Page 16] is used to define a database table or structure, a name can be assigned
to the included substructure. The group of fields in the include can be addressed as a whole in
ABAP programs with this name.

In ABAP programs, you can either access the fields directly with <Table/structure name>-<Field
name> or analogously with <Table/structure name>-<Group name>-<Field name>. You can
access the fields of the group as a whole with <Table/structure name>-<Group name>.

Structure PERSON includes structure ADDRESS with the name ADR. ADDRESS
has a field CITY. With PERSON-ADR you can address all the fields in structure
ADDRESS. The included field CITY can also be addressed with PERSON-CITY or
PERSON-ADR-CITY.

You can include a structure more than once (e.g. in a period group). Since direct access by field
name should be permitted here, the included field names must be renamed to ensure that they
are unique.

A suffix can be assigned to each group, extending the names of the group fields. The fields can
then be addressed in ABAP programs with <Table/structure name>-<Field name (with suffix)> or
<Table/structure name>-<Group name>-<Field name (with suffix)>.

Structure PERSON includes structure ADDRESS twice. An address is the private
address with suffix H and name ADRH. The other address is the business address
with suffix W and name ADRW. You can access field CITY in the private address
with PERSON-CITYH or PERSON-ADRH-CITY.

The functionality of the named includes in the ABAP Dictionary corresponds to the ABAP
construction INCLUDE TYPE ... AS ... RENAMING

 SAP AG BC - ABAP Dictionary

Foreign Keys

December 1999 19

Foreign Keys
You can define the relationships between tables in the ABAP Dictionary by creating foreign keys.

Using foreign keys, you can easily create value checks for input fields. Foreign keys can also be
used to link several tables in a view [Page 95] or a lock object [Page 202].

Field Assignment in the Foreign Key
A foreign key links two tables T1 and T2 by assigning fields of table T1 to the primary key fields
of table T2.

Primary key

Check table T2

Field 5 Field 6 Field 7

Primary key

Foreign key table T1

Field 1 Field 2 Field 3 Field 4

Foreign key fields

Table T1 is called the foreign key table (dependent table) and table T2 the check table
(referenced table). The pair of fields for the two tables must have the same data type and length.
One field of the foreign key table therefore corresponds to each key field of the check table. This
field is called the foreign key field.

A foreign key permits you to assign data records in the foreign key table and check table. One
record of the foreign key table uniquely identifies one record of the check table using the entries
in the foreign key fields.

Check Field and Value Check
One of the foreign key fields is marked as the check field. This means that the foreign key
relationship is maintained for this field.

BC - ABAP Dictionary SAP AG

Foreign Keys

20 December 1999

When an entry is made in the check field, there is a check whether the check table contains a
record with the key defined by the values in the foreign key fields. If this is so, the entry is valid.
Otherwise the system rejects the entry.

Field1

Field2 3

Field3

Field4 1

Input template for
foreign key table T1

Input is valid since there is a
corresponding record in the
check table

Field5 Field6 Field7

Check table T2

1
1
2
3
3
3
4
4

1
3
1
1
2
3
1
2

Text 1
Text 2
Text 3
Text 4
Text 5
Text 6
Text 7
Text 8

In this example the entry Field2 = 2 and Field4 = 2 would be rejected since T2 does not contain a
record with the key Field5 = 2 and Field6 = 2.

If you do not want to check against all the key fields of the check table, you can exclude fields of
the foreign key table from the assignment of the fields to the check table with generic and
constant foreign keys [Page 22].

How the Input Check Works
A SELECT statement is generated from the definition of the foreign key. If an entry is made in the
check field, this SELECT statement is submitted. If a suitable record of the check table is found,
the entry is valid. Otherwise the entry is rejected.

The corresponding SELECT statement has the following form for the foreign key table shown in
the above graphic:

SELECT * FROM T2 WHERE T2-FIELD5 = T1-FIELD2 AND T2-FIELD6 = T1-FIELD4.

A screen entry for check field Field2 is therefore only valid if the check table contains a record
with the entries made in the screen for Field2 and Field4 as key.

Table SBOOK in the flight model [Page 295] contains the customer’s flight bookings
for a carrier. The flight bookings can be made by a travel agency or directly at the
carrier’s sales counter. If the booking was made at a counter, its number is stored
together with the booking in field COUNTER in table SBOOK.

 SAP AG BC - ABAP Dictionary

Foreign Keys

December 1999 21

You must make sure that only correct counter numbers can be entered. All the
counters are entered in table SCOUNTER. The necessary value check can be
defined by creating a foreign key for check field COUNTNUM.

Key fields

Check table SCOUNTER

MANDT CARRID COUNTNUM AIRPORT

Foreign key table SBOOK

MANDT CARRID CONNID FLDATE CUSTOMID CANCELED

Foreign key fields

Check field

... COUNTER ...

See also:
Multi-Structured Foreign Keys [Page 29]

Semantic Attributes of Foreign Keys [Page 24]

Creating Foreign Keys [Page 74]

BC - ABAP Dictionary SAP AG

Generic and Constant Foreign Keys

22 December 1999

Generic and Constant Foreign Keys
It is not always advisable to check a foreign key against all the key fields of the check table. This
is true for example for time-dependent check tables and for check tables whose version number
is a component of the key.

You can use generic foreign keys in these cases. Fields are excluded from the assignment to the
key fields of the check table here. The check is only against the remaining key fields.

You can also assign a constant value to a key field of the check table. In this case you only have
to check against the specified constant. You can use this check if only records of the check table
which contain a constant value in this key field are valid.

Check table
PTAB

Field 1 Field 2 Field 3

Primary key

Foreign key table FTAB

Field 6 Field 7 Field 8 Field 9

Field 4 Field 5

Generic
 *

Constant
 K

The corresponding SELECT statement for the screen check has the following form for the foreign
key definition in the graphic:

SELECT * FROM PTAB WHERE PTAB-FIELD1 = FTAB-FIELD6 AND PTAB-FIELD3 = FTAB-
FIELD8 AND PTAB-FIELD4 = ‘K’.

An entry is only valid in check field Field6 if a record of check table PTAB exists containing the
input value for Field6 in PTAB-Field1, the input value for Field8 in PTAB-Field3 and constant K in
PTAB-Field4.

 SAP AG BC - ABAP Dictionary

Generic and Constant Foreign Keys

December 1999 23

Field 6
Field 7 30

Field 8

Field 9 B

Input template for foreign key
table FTAB

Input is valid since Field 7 and
Field 9 were removed from the
assignment

Field 1 Field 2 Field 3

Check table PTAB
3

1 Field 4 Field 5

1
1
2
3
3
3
4
4

1
1
1
2
1
2
1
2

1
3
1
1
2
3
3
4

A
B
A
K
A
A
C
C

Text 1
Text 2
Text 3
Text 4
Text 5
Text 6
Text 7
Text 8

The values entered on the screen for Field7 and Field9 are meaningless when checking against
the check table. An entry with Field6 = 1, Field8 = 3 and Field9 = B would not be valid in this case
since there is no record with PTAB-Field1 = 1, PTAB-Field3 = 3 and PTAB-Field4 = K in the
check table!

BC - ABAP Dictionary SAP AG

Semantic Attributes of Foreign Keys

24 December 1999

Semantic Attributes of Foreign Keys
A foreign key describes a relationship between two tables. You can define this relationship more
precisely by specifying the cardinality [Page 25] and type of foreign key fields [Page 26].

This information is optional and is primarily for documentary purposes. In particular, the
definitions of the cardinality and type of the foreign key fields are not used in the value check for
the foreign key.

The definition of the semantic attributes is only used in the following cases:

• If Key fields of a text table is selected as the type of the foreign key fields, the foreign key
table is considered to be the text table [Page 27] for the check table. If a screen field is
checked against a table, the key entries of the check table are normally displayed in the
input help (F4 help) for this field. If there is a text table for the check table, each key entry
displayed is enhanced with an explanatory text (contents of the first character-like field of
the text table) in the user’s logon language.

• Tables can only be included in a help view [Page 111] or maintenance view [Page 112] if
they are linked with a foreign key. It only makes sense to create such a help or
maintenance view if for each record in the primary table of the view there is no more than
one corresponding record in each secondary table of the view. The system therefore
checks if the foreign key with which the tables were linked in the view have suitable
cardinalities when it creates a maintenance or help view. See also Restrictions for
Maintenance and Help Views [Page 114].

The foreign key between tables SBOOK and SCOUNTER ensures that only existing
counters can be entered in field COUNTER (counter at which the flight was booked).
See the example in Foreign Keys [Page 19] .

A booking can be made at either a travel agency or at the carrier’s sales counter. If
the booking is made at a travel agency, the field COUNTER of table SBOOK remains
empty. The foreign key fields do not have to be filled, that is the left side of the
cardinality is C. Any number of bookings may be made at each counter. There may
therefore be any number of entries (bookings) in foreign key table SBOOK for each
record of the check table SCOUNTER. The right side of the cardinality is therefore
CN.

Of course several bookings can be made for the same carrier at a counter. These
bookings do not differ in their foreign key fields (MANDT, CARRID, COUNTER). The
entries in the foreign key fields therefore do not uniquely identify an entry in the
foreign key table SBOOK (a booking). The foreign key fields therefore have the type
No key fields/candidates.

 SAP AG BC - ABAP Dictionary

Cardinality

December 1999 25

Cardinality
The cardinality (n:m) describes the foreign key relationship with regard to the number of possible
dependent records (records of the foreign key table) or referenced records (records of the check
table).

The left side (n) of the cardinality is defined as follows:

• n=1: There is exactly one record assigned to the check table for each record of the
foreign key table.

• n=C: The foreign key table may contain records which do not correspond to any record of
the check table because the foreign key field is empty. This can occur for example if the
field of the foreign key table is optional, in which case it does not have to be filled.

 The right side (m) of the cardinality is defined as follows:

• m=1: There is exactly one dependent record for each record of the check table.

• m=C: There is at most one dependent record for each record of the check table.

• m=N: There is at least one dependent record for each record of the check table.

• m=CN: There may be any number of dependent records for each record of the check
table.

BC - ABAP Dictionary SAP AG

Type of Foreign Key Fields

26 December 1999

Type of Foreign Key Fields
The Type of foreign key fields describes what the foreign key fields in the foreign key table mean.

The following types of foreign key field can be defined:

• No key fields/candidates: The foreign key fields are neither primary key fields of the
foreign key table nor do they uniquely identify a record of the foreign key table (key
candidates). For this reason, the foreign key fields do not (partially) identify the foreign
key table.

• Key fields/candidates: The foreign key fields are either primary key fields of the foreign
key table or they already uniquely identify a record of the foreign key table (key
candidates). The foreign key fields therefore (partially) identify the foreign key table.

• Key fields of a text table: The foreign key table is a text table [Page 27] for the check
table, that is the key of the foreign key table only differs from the key of the check table in
that it has an additional language key field. This is a special case of the type Key
fields/candidates.

 SAP AG BC - ABAP Dictionary

Text Tables

December 1999 27

Text Tables
Table A is a text table of table B if the key of A comprises the key of B and an additional
language key field (field of data type LANG). Table A may therefore contain explanatory text in
several languages for each key entry of B.

To link the key entries with the text, text table A must be linked with table B using a foreign key.
Key fields of a text table must be selected here for the type of foreign key fields (see Semantic
Attributes of Foreign Keys [Page 24]).

K1 K2 F1 F2

1 1
1 2

YYXX
XXYY

Table B
Key fields K1 and K2

K1 K2 L TEXT

1 1
1 1

Text 1 (German)
Text 1 (English)

DE

Text 2 (German)
Text 2 (English)

EN

Text table A for B
Key fields K1, K2 and L (type LANG)

...

...

...

...

1
1

2
2

DE
EN

...

...

Text foreign key

If table B is the check table of a field, the existing key entries of table B are displayed as possible
input values when the input help (F4) is pressed. The explanatory text (contents of the first
character-like non-key-field of text table A) is also displayed in the user's logon language for each
key value in table B.

BC - ABAP Dictionary SAP AG

Text Tables

28 December 1999

Field 1

Field 2

Maintenance screen

Field is checked
against table B

K1 K2 Text

......

11 11 Text1 (Text1 (EnglishEnglish))

11 22 Text2 (Text2 (EnglishEnglish))

......

Hit list if user logs on in English

Call the input help

Only one text table can be created for table B! The system checks this when you attempt to
activate a table with text foreign keys for B.

 SAP AG BC - ABAP Dictionary

Multi-Structured Foreign Keys

December 1999 29

Multi-Structured Foreign Keys
When you define a foreign key, a field of the work area that is not contained in the foreign key
table can also be assigned to a check table (for example a field of another table). This is possible
for all fields except for the check field.

Table T2 is the check table of foreign key table T1. Field F of the work area is
assigned to key field Field6 of check table T2.

Primary key

Check table T2

Field 5 Field 6 Field 7

Primary key

Foreign key table T1

Field 1 Field 2 Field 3 Field 4

Field F of
work area

The corresponding SELECT statement for the input check is then:

SELECT * FROM T2 WHERE T2-FIELD5 = T1-FIELD2 AND T2-FIELD6 = F.

If an entry is made in field T1-Field2 (check field), this SELECT statement will be
submitted. If a corresponding record is found, the entry is valid; otherwise it is
rejected.

If a field that is not contained in the foreign key table is assigned to a field of the
check table, this field must be filled at the time of the input check. Otherwise the
check always fails, and no values can be entered in the check field.

BC - ABAP Dictionary SAP AG

Technical Settings

30 December 1999

Technical Settings
The technical settings of a table define how the table will be handled when it is created in the
database, that is whether the table will be buffered and whether changes to data records of the
table will be logged.

The most important parameters are:

• Data class: The data class [Page 31] defines the physical area of the database
(tablespace) in which the table should be created.

• Size category: The size category [Page 32] defines the size of the extents created for the
table.

When the table is created in the database, the required information about the memory area to be
selected and the extent size is determined from the technical settings.

• Buffering permission: The buffering permission [Page 33] defines whether the table may
be buffered.

• Buffering type: If the table may be buffered, you must define a buffering type (full, single-
record, generic). The buffering type [Page 34] defines how many table records are
loaded into the buffer when a table entry is accessed.

• Logging: This parameter defines whether changes to the table entries should be logged.
If logging [Page 41] is switched on, each change to a table record is recorded in a log
table.

The Convert to transparent table flag (transparent flag [Page 42]) is also displayed for pooled
tables or for tables which were converted into transparent tables earlier on with this flag.

See also:
Maintaining Technical Settings [Page 76]

Buffering Database Tables [Page 43]

 SAP AG BC - ABAP Dictionary

Data Class

December 1999 31

Data Class
If you choose the data class correctly, your table is automatically assigned to the correct area
(tablespace or DBspace) of the database when it is created. Each data class corresponds to a
physical area in which all the tables assigned to this data class are stored. There are the
following data classes:

• APPL0 (master data): Data which is seldomly changed. An example of master data is the
data contained in an address file, such as the name, address and telephone number.

• APPL1 (transaction data): Data that is frequently changed. An example of transaction
data is the goods in a warehouse, which change after each purchase order.

• APPL2 (organizational data): Customizing data that is defined when the system is
installed and seldomly changed. An example is the table with country codes.

Two further data classes, USR and USR1, are provided for the customer. These are for user
developments. The tables assigned to these data classes are stored in a tablespace for user
developments.

Database

Tables in the ABAP Dictionary

Master data Transaction dataOrganizational data System data

Tablespace
Org.data

Tablespace
master data

Tablespace
Trans. data

Tablespace
System data

Table 1

Table 3

Table 2 Table 5Table 4

Table 6

Table 1

Table 3
Table 2 Table 5

Table 6

Table 7

Table 4

Table 7

BC - ABAP Dictionary SAP AG

Size Category

32 December 1999

Size Category
The size category defines the expected space required for the table in the database. You can
choose a size category from 0 to 4 for your table. Each category is assigned a certain fixed
memory size in the database, which depends on the database system used.

When a table is created, initial space (an Initial Extent) is reserved in the database. If more space
is required at a later time due to data entries, additional memory will be added depending on the
selected size category.

Initial
Extent

First
Extent

Second
Extent

Technical settings

Size category
TABA
TABB
TABC

TABA

TABB

TABC

Database

1
3
4

...
...

...

Selecting the correct size category prevents a large number of very small extents from being
created for a table. It also prevents space from being wasted if extents which are too large are
created.

 SAP AG BC - ABAP Dictionary

Buffering Permission

December 1999 33

Buffering Permission
You must define whether and how a table is buffered in the technical settings for the table. There
are three possibilities here:

• Buffering not permitted: Table buffering is not permitted, for example because application
programs always need the most recent data from the table or the table is changed too
frequently.

• Buffering permitted but not activated: Buffering is permitted from the business and
technical points of view. Applications which access the table execute correctly with and
without table buffering. Whether or not table buffering will result in a gain in performance
depends on the table size and access profile of the table (frequency of the different types
of table access). Table buffering is deactivated because it is not possible to know what
these values will be in the customer system. If table buffering would be advantageous for
the table size and access profile of the table, you can activate it in the customer system
at any time.

• Buffering activated: The table should be buffered. In this case you must specify a
buffering type [Page 34].

See also:
Buffering Database Tables [Page 43]

Which Tables Should be Buffered? [Page 53]

BC - ABAP Dictionary SAP AG

Buffering Types

34 December 1999

Buffering Types
The buffering type defines which table records are loaded into the buffer of the application server
when a table record is accessed. There are the following buffering types:

• Full buffering [Page 35]: All the records of the table are loaded into the buffer when one
record of the table is accessed.

• Generic buffering [Page 37]: When a record of the table is accessed, all the records
having this record in the generic key fields (part of the table key that is left-justified,
identified by specifying a number of key fields) are loaded into the buffer.

• Single-record buffering [Page 39]: Only the records of a table that are really accessed
are loaded into the buffer.

See also:
Buffering Database Tables [Page 43]

 SAP AG BC - ABAP Dictionary

Full Buffering

December 1999 35

Full Buffering
With full buffering, either the entire table is in the buffer or the table is not in the buffer at all. All
the records of the table are loaded into the buffer when one record of the table is read.

In this example, a program reads the record highlighted in red from table
SCOUNTER. If the table is fully buffered, all the records of the table are loaded into
the buffer.

Application server
SELECT * FROM SCOUNTER WHERE
MANDT = ‘001’ AND CARRID = ‘LH’
AND COUNTNUM = '00000004'.

Buffer contents
00000001
00000001
00000002
00000003
00000004
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000001

AA
BA
BA
BA
BA
LH
LH
LH
LH
LH
LH
LH
LH
UA

001
001
001
001
001
001
001
001
001
001
001
001
001
001

ACA
ACE
BER
LCY
LHR
BER
DEN
FRA
LCY
LGW
LHR
MUC
RTM
HAM

Database table SCOUNTER
AIRPORTMANDT CARRID COUNTNUM

00000001
00000001
00000002
00000003
00000004
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000001

AA
BA
BA
BA
BA
LH
LH
LH
LH
LH
LH
LH
LH
UA

001
001
001
001
001
001
001
001
001
001
001
001
001
001

ACA
ACE
BER
LCY
LHR
BER
DEN
FRA
LCY
LGW
LHR
MUC
RTM
HAM

The buffered data records are sorted in the buffer by table key. Accesses to the
buffered data can therefore only analyze field contents up to the last specified key
field for restricting the dataset to be searched.

The left-justified part of the key should therefore be as large as possible in such
accesses. For example, if you do not define the first key field, the system has to scan
the full table. In this case direct access to the database can be more efficient if the
database has suitable secondary indexes [Page 61].

When Should you Use Full Buffering?
When deciding whether a table should be fully buffered, you should take into account the size of
the table, the number of read accesses, and the number of write accesses. Tables best suited to
full buffering are small, read frequently, and rarely written.

Full buffering is recommended in the following cases:

BC - ABAP Dictionary SAP AG

Full Buffering

36 December 1999

• Tables up to 30 KB in size. If a table is accessed frequently, but all accesses are read
accesses, this value can be exceeded. However, you should always pay attention to the
buffer utilization.

• Larger tables where large numbers of records are frequently accessed. If these mass
accesses can be formulated with a very selective WHERE condition using a database
index [Page 61], it could be better to dispense with buffering.

• Tables for which accesses to non-existent records are frequently submitted. Since all the
table records reside in the buffer, the system can determine directly in the buffer whether
or not a record exists.

 SAP AG BC - ABAP Dictionary

Generic Buffering

December 1999 37

Generic Buffering
With generic buffering, all the records in the buffer whose generic key fields match this record are
loaded when one record of the table is accessed. The generic key is a part of the primary key of
the table that is left-justified.

In this example, the record highlighted in red is read by a program from table
SCOUNTER. If the table is generically buffered, all the records read whose generic
key fields (MANDT and CARRID) agree are loaded into the buffer.

Application server

Buffer contents

00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008

LH
LH
LH
LH
LH
LH
LH
LH

001
001
001
001
001
001
001
001

BER
DEN
FRA
LCY
LGW
LHR
MUC
RTM

Generic key

Database table SCOUNTER
MANDT CARRID COUNTNUM

00000001
00000001
00000002
00000003
00000004
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000001

AA
BA
BA
BA
BA
LH
LH
LH
LH
LH
LH
LH
LH
UA

001
001
001
001
001
001
001
001
001
001
001
001
001
001

ACA
ACE
BER
LCY
LHR
BER
DEN
FRA
LCY
LGW
LHR
MUC
RTM
HAM

AIRPORT

SELECT * FROM SCOUNTER WHERE
MANDT = ‘001’ AND CARRID = ‘LH’
AND COUNTNUM = '00000004'.

When Should you Use Full Buffering?
A table should be buffered generically if only certain generic areas of the table are normally
needed for processing.

Client-specific, fully-buffered tables are automatically generically buffered since normally it is not
possible to work in all clients at the same time on an application server. The client field is the
generic key.

Language-specific tables are another example where generic buffering is recommended. In
general, only records of one language will be needed on an application server. In this case, the
generic key includes all the key fields up to and including the language field.

How Should you Define the Generic Key?
In generic buffering, it is crucial to define a suitable generic key.

BC - ABAP Dictionary SAP AG

Generic Buffering

38 December 1999

If the generic key is too small, the buffer will contain a few very large areas. During access, too
much data might be loaded in the buffer.

If the generic key is too large, the buffer might contain too many small generic areas. These can
reduce buffer performance since there is an administrative entry for every buffered generic area.
It is also possible that too many accesses will bypass the buffer and go directly to the database,
since they do not fully define the generic key of the table. If there are only a few records in each
generic area, it is usually better to fully buffer the table.

Only 64 bytes of the generic key are used. You can specify a longer generic key, but the part of
the key exceeding 64 bytes is not used to create the generic areas.

Access to Buffered Data
It only makes sense to generically buffer a table if the table is accessed with fully-specified
generic key fields. If a field of the generic key is not assigned a value in a SELECT statement, it
is read directly from the database, bypassing the buffer.

If you access a generic area that is not in the buffer with a fully-specified generic key, you will
access the database to load the area. If the table does not contain any records in the specified
area ("No record found"), this area in the buffer is marked as non-existent. It is not necessary to
access the database if this area is needed again.

 SAP AG BC - ABAP Dictionary

Single-Record Buffering

December 1999 39

Single-Record Buffering
With single-record buffering, only the records that are actually read are loaded into the buffer.
Single-record buffering therefore requires less storage space in the buffer than generic and full
buffering. The administrative costs in the buffer, however, are greater than for generic or full
buffering. Considerably more database accesses are necessary to load the records than for the
other buffering types.

In this example, the record highlighted in red is read by a program from table
SCOUNTER. If single-record buffering is selected for the table, only the record that
was read is loaded into the buffer.

Buffer contents

00000004 LH001 LCY

Database table SCOUNTER
MANDT CARRID COUNTNUM

00000001
00000001
00000002
00000003
00000004
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000001

AA
BA
BA
BA
BA
LH
LH
LH
LH
LH
LH
LH
LH
UA

001
001
001
001
001
001
001
001
001
001
001
001
001
001

ACA
ACE
BER
LCY
LHR
BER
DEN
FRA
LCY
LGW
LHR
MUC
RTM
HAM

AIRPORT

Application server
SELECT SINGLE FROM SCOUNTER WHERE
MANDT = ‘001’ AND CARRID = ‘LH’
AND COUNTNUM = '00000004'.

When Should you Use Single-Record Buffering?
Single-record buffering should be used particularly for large tables where only a few records are
accessed with SELECT SINGLE. The size of the records being accessed should be between 100
and 200 KB.

Full buffering is usually more suitable for smaller tables that are accessed frequently. This is
because only one database access is necessary to load such a table with full buffering, whereas
several database accesses are necessary for single-record buffering.

Access to Buffered Data
All accesses that are not submitted with SELECT SINGLE go directly to the database, bypassing
the buffer. This applies even if the complete key is specified in the SELECT statement.

BC - ABAP Dictionary SAP AG

Single-Record Buffering

40 December 1999

If you access a record which is not yet buffered with SELECT SINGLE, there is a database
access to load the record. This record is marked in the buffer as non-existent if the table does not
contain a record with the specified key. This prevents another database access when accessing
the table at a later time with the same key.

 SAP AG BC - ABAP Dictionary

Logging

December 1999 41

Logging
Using the logging flag you can define whether changes to the data records of a table should be
logged. If logging is switched on, each change to an existing data record (with UPDATE,
DELETE) by the user or application program is recorded in the database in a log table
(DBTABPRT).

Application
transaction

Change a record

System profile

rec/client =ALL
...

...

Database

ABAP Dictionary

Log TAB

TAB

Field 1 Field 2 Field 3

TAB Log table
 Field 1 Field 2 Field 3

To switch on logging, the R/3 System must be started with a profile containing parameter
rec/client. This parameter defines whether all clients or only selected clients should be logged.

The parameter can have the following values:

rec/client = ALL Log all clients.

rec/client = 000[,...] Log the specified clients.

rec/client = OFF Do not log.

Logging slows down accesses that change the table. First of all, a record must be
written in the log table for each change. Secondly, a number of users access this log
table in parallel. This can cause lock situations although the users are working with
different application tables.

Logging is independent of the update.

The existing logs can be displayed with Transaction Table History (SCU3).

BC - ABAP Dictionary SAP AG

Converting Pooled Tables to Transparent Tables

42 December 1999

Converting Pooled Tables to Transparent Tables
You can easily convert pooled tables to transparent table with the transparent flag of the
technical settings. You can use this option to access a pooled table from outside the R/3 System.

Procedure
1. From the maintenance screen of the pooled table, go to the maintenance screen for the

technical settings [Page 30] of the pooled table with Technical settings.

2. Select Convert to transparent table. This will only correct the technical settings and not
the table definition.

3. Maintain the remaining attributes of the technical settings.

4. Activate the technical settings.

Result
A conversion converts the pooled table to a transparent table (see Adjusting Database Structures
[Page 219]). In a dialog box you can decide whether to convert the table directly or in the
background.

If SAP again delivers a table whose transparent flag is set as a pooled table, it will remain
transparent in the user system. If you want to convert a table whose transparent flag is set back
to a pooled table, you must first cancel the transparent flag. Then activate the technical settings.
You can only change the table category [Page 90] after these actions.

If there is a revised version of a pooled table, it cannot be converted to a transparent
table with the transparent flag. In this case the technical settings of the table cannot
be activated when the transparent flag is set.

There are some restrictions for transparent tables (number of key fields, key length,
table length) that are not valid for pooled tables. Only those pooled tables which
satisfy all these restrictions can be converted with the transparent flag. If one of
these restrictions is violated, the technical settings cannot be activated. In this case
you can find the cause of the error in the activation log.

See also:
Pooled and Cluster Tables [Page 256]

 SAP AG BC - ABAP Dictionary

Buffering Database Tables

December 1999 43

Buffering Database Tables
Buffering a table improves the performance when accessing the data records contained in the
table.

The table buffers reside locally on each application server in the system. The data of buffered
tables can thus be accessed directly from the buffer of the application server. This avoids the
time-consuming process of accessing the database.

Database interface

SELECT * FROM SBOOK
WHERE ...

ABAP Program

Communication system

R/3 table buffer

Database

Applikationsserver

Database
processes

Database
buffers

Application server

Buffering is particularly important in client/server environments, as it takes considerably longer to
access a table with the network than it does to access a table that is buffered locally. Depending
on the network load, this factor can lie between 10 and 100.

The difference in performance is somewhat less marked in central systems (systems with only
one application server) than in local ones (systems with several application servers). However,
even in central systems, a reduction in process changes and increased sophistication of the
buffering over that provided by the database system have a noticeable effect on performance.

How are the Buffers Filled?
If a program accesses the data of a buffered table, the database interface determines whether
this data is in the buffer of the application server. If this is the case, the data is read directly from
the buffer. If the data is not in the buffer of the application server, it is read from the database and
loaded into the buffer. The next access to this data can then use the buffer.

The buffering type [Page 34] determines which records are loaded into the buffer during an
access.

BC - ABAP Dictionary SAP AG

Buffering Database Tables

44 December 1999

Program reads data
from a buffered table
that is not yet in the
buffer

Data is loaded into
the buffer

Table buffer

Program

Database

Application server

How are the Local Buffers Synchronized?
A buffered table is generally read on all application servers and held in the buffer there. If a
program changes the data contained in the table on an application server, this is noted in the log
table by the database interface. The buffers still have the old status on all the other application
servers, so that the programs might read obsolete data.

A synchronization mechanism [Page 46] runs at a fixed time interval, usually every 1-2 minutes.
The log table is read and the buffer contents that were changed by other servers are invalidated.
In the next access, the data of invalidated tables is read directly from the database and updated
in the buffer.

Displacement
If more space is required in the buffer due to new data, the data that has not been accessed for
the longest time is displaced. The data is displaced asynchronously at certain times that are
defined dynamically by the buffer accesses. The data is only displaced if at this time the free
space in the buffer is less than a given value or if the access quality is not good enough.

Resetting the Table Buffers
You can reset the table buffers on the corresponding application servers by entering $TAB in the
command field. All the data in the buffer is invalidated.

Only use this command if inconsistencies occurred in the buffer! It can take several hours to fill
the buffers in large systems. Performance is considerably reduced during this time.

See also:
Local Buffer Synchronization [Page 46]

 SAP AG BC - ABAP Dictionary

Buffering Database Tables

December 1999 45

Which Tables Should be Buffered? [Page 53]

How are Table Buffers Implemented Technically [Page 55]?

Which Accesses Proceed Directly to the Database? [Page 54]

How can you Analyze the Buffer Quality? [Page 60]

BC - ABAP Dictionary SAP AG

Local Buffer Synchronization

46 December 1999

Local Buffer Synchronization
The table buffers reside locally on each application server in the system. However, this makes it
necessary for the buffer administration to transfer all changes made to buffered objects to all the
application servers of the system.

Application server

Table buffer

Program

Database

Application server

Table buffer

Program

If a buffered table is modified, it is updated synchronously in the buffer of the application server
from which the change was made. The buffers of the whole network, that is, the buffers of all the
other application servers, are synchronized with an asynchronous procedure.

Entries are written in a central database table (DDLOG) after each table modification that could
be buffered. Each application server reads these entries at fixed time intervals.

If entries are found that show a change to the data buffered by this server, this data is
invalidated. If this data is accessed again, it is read directly from the database. In such an
access, the table can then be loaded to the buffer again.

To prevent a table being constantly loaded to the buffer and then immediately invalidated there,
the table can only be loaded again to the buffer after a waiting time following invalidation.

The advantage of this method over a synchronous method (where the network immediately
reports each change to buffered data of one server to all the other servers) is that the load on the
network is kept to a minimum. If the buffers were to be synchronized after each modification,
each server would have to report each modification to a buffered table to all the other servers
using the network. This would have a negative effect on the performance.

The disadvantage of this method as compared with synchronous updating is that the data will not
be up-to-date during the time interval between two synchronizations.

Because of the asynchronous buffer synchronization method, you should note the following when
setting the table buffering:

 SAP AG BC - ABAP Dictionary

Local Buffer Synchronization

December 1999 47

• Only tables that are rarely written (read mostly) or for which temporary inconsistencies
are of no significance should be buffered.

• Tables whose entries are frequently modified should not be buffered. Otherwise there
would be constant invalidation and reloading, which would have a negative effect on the
performance.

The default setting is for buffer synchronization to be activated in the system profile.
Buffer synchronization is not required in central systems with only one application
server and must be switched off.

See also:
Example for Buffer Synchronization [Page 48]

BC - ABAP Dictionary SAP AG

Example for Buffer Synchronization

48 December 1999

Example for Buffer Synchronization
The following example shows how the local buffers of the system are synchronized. We have a
system with two application servers, called Server1 and Server2.

Initial situation: Neither server has yet accessed records of the fully buffered table TAB. The
local buffers of both servers do not yet contain the records of the table.

Event 1: Server 1 reads records from table TAB in the database.

Event 2: Table TAB is completely loaded into the local buffer of Server 1. Accesses by Server 1
to the data of table TAB now use the local buffer of this server.

Event 3: Server 2 accesses records of the table. Since the table is not yet in the local buffer of
Server 2, the records are read directly from the database.

Event 4: Table TAB is completely loaded into the local buffer of Server 2. Server 2 then also
accesses the data in TAB using its local buffer the next time it reads.

Server 2

Buffer

TAB

SELECT * FROM TAB
WHERE FIELD = ‘X’.

Server 1

Buffer

Synchronization table

11

22

TAB

SELECT * FROM TAB
WHERE FIELD = ‘Y’.

33

44

TAB

Event 5: Server 1 deletes records from table TAB and updates the database.

Event 6: Server 1 writes an entry in the synchronization table.

Event 7: Server 1 updates its local buffer.

 SAP AG BC - ABAP Dictionary

Example for Buffer Synchronization

December 1999 49

Server 2

Buffer

TAB

DELETE * FROM TAB
WHERE FIELD = ‘X’.

Server 1

Buffer

Synchronization table

TAB TAB

TAB modified by
Server 1

55 66

77

Event 8: Server 2 accesses the deleted data records. Since table TAB is in its local buffer,
access uses this local buffer.

Server 2 therefore finds the records, although they are no longer in the database table!

If the same access were executed from an application program on Server 1, this program would
see that the records no longer exist. The behavior of an application program at this time therefore
depends on the server on which it is executing!

BC - ABAP Dictionary SAP AG

Example for Buffer Synchronization

50 December 1999

TAB
Synchronization table

TAB modified by
Server 1

SELECT * FROM TAB
WHERE FIELD = ‘X’.

Server 2

Buffer

Server 1

Buffer

TAB TAB
88

Event 9: It is now time for synchronization. Both servers check the synchronization table to find
out whether one of the tables in its local buffer has been changed in the meantime.

Event 10: Server 2 finds that table TAB was modified by Server 1 in the meantime. Server 2
therefore invalidates the table in its local buffer. The next time Server 2 accesses the data in
table TAB, it therefore uses the database. Server 1 does not have to invalidate the table in its
buffer because it alone changed table TAB. Server 1 therefore uses its local buffer the next time
it accesses records of table TAB.

 SAP AG BC - ABAP Dictionary

Example for Buffer Synchronization

December 1999 51

Server 2

Buffer

TAB

Server 1

Buffer

Synchronization table

TAB TAB

TAB modified by
Server 1

9999

1010

Synchronization

Event 11: Server 2 again accesses records of table TAB. Because TAB was invalidated in the
local buffer of Server 2, access uses the database.

Event 12: The table is again loaded into the local buffer of Server 2. The information about table
TAB is now consistent for both servers and the database.

BC - ABAP Dictionary SAP AG

Example for Buffer Synchronization

52 December 1999

TAB
Synchronization table

SELECT * FROM TAB
WHERE FIELD = ‘Y’.

Server 2

Buffer

Server 1

Buffer

TAB TAB

1111

1212

 SAP AG BC - ABAP Dictionary

Which Tables should be Buffered?

December 1999 53

Which Tables should be Buffered?
Only transparent tables and pooled tables can be buffered. Cluster tables cannot be buffered.

Character data types must be assigned to all key fields of buffered tables, that is the data type of
the field must be mapped to one of the ABAP types C, N, D or T (see Mapping to ABAP Data
Types [Page 238]).

The following two points speak against table buffering:

• The data read by the application must always be up-to-date. Delays caused by the
synchronization mechanism (see Synchronization of Local Buffers [Page 46]) cannot be
accepted.

• The table data is frequently modified. In this case the cost of synchronization could be
greater than the gain in performance resulting from buffering. Roughly speaking, it does not
make sense to buffer a table if more than one percent of the accesses to the table are
modifying accesses.

The table containing currency exchange rates is updated only once a day, but it is
read frequently. Buffering is recommended in this case.

Typical candidates for buffering include customizing and system tables. In certain cases master
data with customizing character can also be buffered.

The contents of buffered tables are not always up-to-date in a distributed system. You can
bypass the buffer and read the data directly from the database table with the ABAP command
"SELECT SINGLE ... BYPASSING BUFFER". If a buffered table is accessed frequently with this
command, you should consider whether it is really necessary for the table to be buffered or
whether it is essential to have the current state of the database.

You must define whether and how a table is buffered in its technical settings (see Technical
Settings [Page 30]).

BC - ABAP Dictionary SAP AG

Which Accesses Proceed Directly to the Database?

54 December 1999

Which Accesses Proceed Directly to the Database?
When programming accesses to buffered tables it is important to know which accesses read from
the buffer and which accesses go directly to the database.

The following accesses always bypass the buffer and proceed directly to the database:

• SELECT... BYPASSING BUFFER

• SELECT FOR UPDATE

• SELECT with aggregate function, for example COUNT, MIN, MAX, SUM, AVG

• SELECT DISTINCT

• SELECT... WHERE… IS NULL

• ORDER BY (with the exception of PRIMARY KEY)

With generic buffering, all SELECT statements that do not fully specify the generic key also
proceed directly to the database. Therefore, with generic buffering the buffer can only be used for
accesses that specify the complete generic key.

With single-record buffering, each SELECT statement without the suffix SINGLE also proceeds
directly to the database. This applies even if the complete key is specified in the SELECT
statement. In single-record buffering, therefore, the buffer can be used only for accesses with
SELECT SINGLE.

Of course, all accesses with Native SQL (EXEC SQL) also bypass the buffer and proceed
directly to the database. Such accesses should be avoided at all costs with buffered tables. First
of all, read accesses always bypass the table buffers. Secondly, the R/3 System does not notice
modifying accesses since no entries are made in the synchronization table here (see
Synchronization of Local Buffers [Page 46]). This can lead to inconsistencies between the data in
the buffers of the application server and the database.

 SAP AG BC - ABAP Dictionary

How are Table Buffers Implemented Technically?

December 1999 55

How are Table Buffers Implemented Technically?
The table buffers lie in shared memory. There is a single-record table buffer TABLP and a
generic/full table buffer TABL. The two table buffers differ primarily in how they manage free
storage areas and in their displacement mechanisms.

Detailed information on the technical buffer structure, especially on the structure, access
mechanism, displacement behavior, and global synchronization in distributed systems can be
found in:

• Single-Record Table Buffers [Page 56]

• Generic and Full Table Buffers [Page 58]

BC - ABAP Dictionary SAP AG

Single-Record Table Buffers

56 December 1999

Single-Record Table Buffers
Individual records of tables with single-record buffering are managed in the single-record table
buffer TABLP.

Technical Implementation and Buffer Access
The single-record table buffer contains a central administrative structure, a table directory and
the data area. The data area is organized in frames of a fixed size (default value 4 KB).

The table names are sorted alphabetically in the directory. The table entries are also stored
sorted in the corresponding frames of the data area.

In a buffer access, a binary search is first used to find the entry in the table directory, followed by
the corresponding frame and then the record searched for within the frame.

Frames can overflow in the data area if new data is inserted while adhering to the sort sequence.
Such overflow frames have to be divided up and their administrative structure must be updated.
This explains why the single-record table buffer is somewhat less efficient than the generic/full
table buffer. In the single-record table buffer, the data records must be added one after the other
while reorganizing the frame structure. In the generic/full buffer, however, all the data of a table is
transferred in one step, already sorted by the database.

Managing Non-Existent Records
The single-record buffer also stores information about non-existent records of a table. If you
attempt to access the table with a key that is not in the database, this information is stored in the
buffer.

This is done with a flag that is added to every record stored in the buffer. The flag shows whether
or not this record exists in the table. If you attempt to access a record that does not exist, an
empty record is stored in the buffer with the corresponding key, and the flag is set to the value for
a non-existent record. If you try to access this record again, the system sees in the buffer that
this record does not exist in the database.

Single-record buffering is also recommended if you repeatedly try to access non-existent records
of a table.

Displacement
If records of a table with single-record buffering are to be read and stored in the buffer, it might
be necessary to remove other records from the buffer for space reasons. In this case, the records
of the table that were least recently accessed are removed from the buffer.

Global Synchronization
The modifications made in the local buffers must be synchronized in distributed systems in order
to keep the buffered data consistent. The general procedure for synchronization is described in
Synchronization of Local Buffers [Page 46].

The effect of different ABAP commands on the local and global synchronization of the single-
record buffer is described below.

If changes are made with WHERE conditions (UPDATE dbtab WHERE ..., DELETE FROM dbtab
WHERE ...), the entire table is invalidated in the buffer of the local server (server on which the
command was submitted) and on all other servers at the time of the synchronization.

 SAP AG BC - ABAP Dictionary

Single-Record Table Buffers

December 1999 57

Changes without WHERE conditions (UPDATE dbtab, INSERT dbtab, DELETE dbtab) modify
the corresponding records in the buffer of the local server and delete them in the buffers of all the
other servers at the time of synchronization.

Modifications with a WHERE condition therefore place a much greater load on buffer
management than those without a WHERE condition.

BC - ABAP Dictionary SAP AG

Generic and Full Table Buffers

58 December 1999

Generic and Full Table Buffers
Generic table areas or full tables are managed in the generic/full table buffer TABL. The
individual generic areas are managed in the buffer like autonomous, fully buffered tables.

Technical Implementation and Buffer Access
Like the single-record buffer, the generic/full table buffer has a central administration structure, a
table directory and the data area.

The main difference between the generic/full buffer and the single-record buffer lies in the data
area administration. The generic/full buffer divides its storage into areas (extents) of variable
length. The length of an extent is a multiple of a fixed block size (256 bytes). The buffer
management tries to place the contents of a generic table area or a whole table in an extent. This
reduces the storage requirements for buffered data in comparison to single-record buffering.

The table names are sorted alphabetically in the table directory. The data records are transferred
to the corresponding extent in one step, already sorted by the database. In a buffer access, there
is first a binary search for the corresponding table name in the table directory. Then there is a
binary search for the corresponding data record in the extent.

Displacement
Unlike with single-record buffering, the displacement for generic/full buffering is carried out
asynchronously at certain fixed times. These times are defined dynamically depending on the
number of accesses to the buffer. The time between two displacements therefore depends on the
buffer utilization factor.

Data is only displaced if the free space in the buffer falls below a defined value or the access
quality (that is, the number of accesses that can be satisfied directly from the buffer) is not good
enough at the time of access. An attempt is made to free a certain area of the buffer. A larger
number of tables is therefore displaced at certain times.

The tables accessed least frequently are displaced. The table accesses are weighted differently,
depending on the time of the access. Accesses lying further in the past are weighted less than
those that occurred shortly before the displacement.

This method ensures that tables which are accessed frequently at a certain time and then not
used again can be displaced from the buffer after a defined time.

The individual generic areas if the buffer of generically buffered tables are treated as
independent tables. Some generic areas of a table can therefore be displaced while other
generic areas of the table are kept in the buffer.

The buffer is reorganized at certain intervals once the tables have been displaced, thus reducing
buffer fragmentation.

Global Synchronization
The modifications made in the local buffers must be synchronized in distributed systems in order
to keep the buffered data consistent. The general procedure for synchronization is described in
Synchronization of Local Buffers [Page 46].

The effect of various ABAP commands on the local and global synchronization of the generic/full
buffer is described below.

 SAP AG BC - ABAP Dictionary

Generic and Full Table Buffers

December 1999 59

If changes are made with WHERE conditions (UPDATE dbtab WHERE ..., DELETE FROM dbtab
WHERE ...), the entire generic area or the entire table is invalidated in the buffer of the local
server (server at which the command was submitted) and on all other servers at the time of
synchronization.

Changes without WHERE conditions (UPDATE dbtab, INSERT dbtab, DELETE dbtab) change
the corresponding records in the buffer of the local server at the time of synchronization. The
entire generic area or the entire table is invalidated in the buffers of all the other servers.

Modifications with a WHERE condition therefore place a much greater load on buffer
management than those without a WHERE condition.

BC - ABAP Dictionary SAP AG

How can you Analyze the Buffer Quality?

60 December 1999

How can you Analyze the Buffer Quality?
The buffer monitor [Ext.] permits you to look at the statistical data on the table buffer and on
individual tables. The buffer monitor can be started from the initial R/3 screen with the following
menu options:

Tools →→→→ Administration
Monitoring →→→→ Performance
Setup/buffers →→→→ Buffers

An overview of all the R/3 buffers and database calls appears.

You can look at the buffer utilization of your server during the last few days with History.

With Current parameters you can display the current valid profile parameters for the buffer sizes.

By selecting Generic key, you get detailed information on the generic/full table buffer. Selecting
Single record gives you detailed information on the single-record table buffer. You can also
access this detailed information with Goto → Detail analysis menu and then Generic key or
Single record in the next screen.

Selecting Buffered objects takes you from the detailed display of the generic/full or single-record
buffer to call statistics for the tables used. The displayed values help you optimize the buffer
parameters in the system profile and search for unfavorably buffered tables. The statistics for the
generic or fully buffered tables appear if you access the call statistics from the information on
generic/full buffers. If you call the statistics from the information on single-record buffers, the
statistics for the single-record buffered tables are displayed.

See also:
BC Computing Center Management System [Ext.]

 SAP AG BC - ABAP Dictionary

Indexes

December 1999 61

Indexes
You can search a table for data records that satisfy certain search criteria faster using an index.

An index can be considered a copy of a database table that has been reduced to certain fields.
This copy is always in sorted form. Sorting provides faster access to the data records of the
table, for example using a binary search. The index also contains a pointer to the corresponding
record of the actual table so that the fields not contained in the index can also be read.

The primary index is distinguished from the secondary indexes of a table. The primary index
contains the key fields of the table and a pointer to the non-key fields of the table. The primary
index is created automatically when the table is created in the database.

Table SCOUNTER in the flight model [Page 295] contains the assignment of the
carrier counters to airports. The primary index on this table therefore consists of the
key fields of the table and a pointer to the original data records.

Table SCOUNTER
MANDT CARRID COUNTNUM

00000005
00000004
00000001
00000002
00000003
00000007
00000001
00000003
00000001
00000001
00000004
00000002
00000006
00000008

LH
BA
UA
LH
BA
LH
AA
LH
BA
LH
LH
BA
LH
LH

001
001
001
001
001
001
001
001
001
001
001
001
001
001

ACA
ACE
BER
LCY
LHR
BER
DEN
FRA
LCY
LGW
LHR
MUC
RTM
HAM

AIRPORT
001
001
001
001
001
001
001
001
001
001
001
001
001
001

MANDT CARRID COUNTNUM
AA
BA
BA
BA
BA
LH
LH
LH
LH
LH
LH
LH
LH
UA

00000001
00000001
00000002
00000003
00000004
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000001

Primary index for SCOUNTER

7
9
12
5
2
10
4
8
11
1
13
6
14
3

P

Key fields

You can also create further indexes on a table in the ABAP Dictionary. These are called
secondary indexes. This is necessary if the table is frequently accessed in a way that does not
take advantage of the sorting of the primary index for the access. Different indexes on the same
table are distinguished with a three-place index identifier [Page 67].

All the counters of carriers at a certain airport are often searched for flight bookings.
The airport ID is used to search for counters for such an access. Sorting the primary
index is of no use in speeding up this access. Since table SCOUNTER has a large

BC - ABAP Dictionary SAP AG

Indexes

62 December 1999

number of entries, a secondary index on the field AIRPORT (ID of the airport) must
be created to support access using the airport ID.

Table SCOUNTER

Secondary
index on
AIRPORT

MANDT CARRIDCOUNTNUM AIRPORT
001
001
001
001
001
001
001
001
001
001
001
001
001
001

LH
BA
UA
LH
BA
LH
AA
LH
BA
LH
LH
BA
LH
LH

00000005
00000004
00000001
00000002
00000003
00000007
00000001
00000003
00000001
00000001
00000004
00000002
00000006
00000008

ACA
ACE
BER
LCY
LHR
BER
DEN
FRA
LCY
LGW
LHR
MUC
RTM
HAM

AIRPORT P
ACA
ACE
BER
BER
DEN
FRA
HAM
LCY
LCY
LGW
LHR
LHR
MUC
RTM

1
2
3
6
7
8
14
4
9
10
5
11
12
13

SELECT * FROM
SCOUNTER WHERE
AIRPORT = ‘LCY’.

Binary search

The optimizer of the database system decides whether an index should be used for a concrete
table access (see How to Check if an Index is Used? [Page 65]). This means that an index might
only result in a gain in performance for certain database systems. You can therefore define the
database systems on which an index should be created when you define the index in the ABAP
Dictionary (see Creating Secondary Indexes [Page 77].)

All the indexes existing in the ABAP Dictionary for a table are normally created in the database
when the table is created if this was not excluded in the index definition for this database system.

If the index fields have key function, that is if they already uniquely identify each record of the
table, an index can be defined as a unique index [Page 66].

See also:
What to Keep in Mind when Creating Secondary Indexes [Page 63]

 SAP AG BC - ABAP Dictionary

What to Keep in Mind for Secondary Indexes

December 1999 63

What to Keep in Mind for Secondary Indexes
How well an existing index supports data selection from a table largely depends on whether the
data selected with the index represents the data that will ultimately be selected. This can best be
shown using an example.

An index is defined on fields FIELD1, FIELD2, FIELD3 and FIELD4 of table BSPTAB
in this order. This table is accessed with the SELECT statement:

SELECT * FROM BSPTAB WHERE FIELD1 = X1 AND FIELD2 = X2 AND FIELD4=
X4.

Since FIELD3 is not specified more exactly, only the index sorting up to FIELD2 is of
any use. If the database system accesses the data using this index, it will quickly find
all the records for which FIELD1 = X1 and FIELD2 = X2. You then have to select all
the records for which FIELD4 = X4 from this set.

The order of the fields in the index is very important for the accessing speed. The first fields
should be those which have constant values for a large number of selections. During selection,
an index is only of use up to the first unspecified field.

Only those fields that significantly restrict the set of results in a selection make sense for an
index.

The following selection is frequently made on address file ADRTAB:

SELECT * FROM ADRTAB WHERE TITEL = ‘Prof.’ AND NAME = X AND
VORNAME = Y.

The field TITLE would rarely restrict the records specified with NAME and
FIRSTNAME in an index on NAME, FIRSTNAME and TITLE, since there are
probably not many people with the same name and different titles. This would not
make much sense in this index. An index on field TITLE alone would make sense for
example if all professors are frequently selected.

Additional indexes can also place a load on the system since they must be adjusted each time
the table contents change. Each additional index therefore slows down the insertion of records in
the table.

For this reason, tables in which entries are very frequently written generally should only have a
few indexes.

The database system sometimes does not use a suitable index for a selection, even
if there is one. The index used depends on the optimizer used for the database
system. You should therefore check if the index you created is also used for the
selection (see How to Check if an Index is Used [Page 65]).).

Creating an additional index could also have side effects on the performance. This is
because an index that was used successfully for selection might not be used any
longer by the optimizer if the optimizer estimates (sometimes incorrectly) that the
newly created index is more selective.

BC - ABAP Dictionary SAP AG

What to Keep in Mind for Secondary Indexes

64 December 1999

The indexes on a table should therefore be as disjunct as possible, that is they
should contain as few fields in common as possible. If two indexes on a table have a
large number of common fields, this could make it more difficult for the optimizer to
choose the most selective index.

 SAP AG BC - ABAP Dictionary

How to Check if an Index is Used

December 1999 65

How to Check if an Index is Used
Procedure

1. Open a second session and choose System →→→→ Utilities →→→→ Performance trace.

 The Trace Requests screen appears.

2. Select Trace on.

 The SQL trace is activated for your user, that is all the database operations under your
user are recorded.

3. In the first window, perform the action in which the index should be used.

 If your database system uses a cost-based optimizer, you should perform this action with
as representative data as possible. A cost-based optimizer tries to determine the best
index based on the statistics.

4. In the second session, choose Trace off and then Trace list.

Result
The format of the generated output depends on the database system used. You can determine
the index that the database used for your action with the EXPLAIN function for the critical
statements (PREPARE, OPEN, REPOPEN).

BC - ABAP Dictionary SAP AG

Unique Indexes

66 December 1999

Unique Indexes
An entry in an index can refer to several records that have the same values for the index fields. A
unique index does not permit these multiple entries. The index fields of a unique index thus have
key function, that is they already uniquely identify each record of the table.

The primary index of a table is always a unique index since the index fields form the key of the
table, uniquely identifying each data record.

You can define a secondary index as a unique index when you create it. This ensures that there
are no double records in the table fields contained in the index. An attempt to maintain an entry
violating this condition in the table results in termination due to a database error.

Database

Table TAB
F1 F4F3F2 F2 F4

Text1 X12A
12 X

Unique index for
TAB with F2 and F4

Z Text4 X12

DB rejects the insertion
since there is a duplicate
entry for the unique index.

Application

Duplicate key of F2 and F4

The accessing speed does not depend on whether or not an index is defined as a unique index.
A unique index is simply a means of defining that certain field combinations of data records in a
table are unique.

A unique index for a client-dependent table must contain the client field.

 SAP AG BC - ABAP Dictionary

Index IDs

December 1999 67

Index IDs
Several indexes on the same table are distinguished by a three-place index identifier. The index
identifier may only contain letters and digits. The ID 0 is reserved for the primary index.

The index name on the database adheres to the convention <Table name>∼<Index ID>.

TEST∼A is the name of the corresponding database index in the database for table
TEST and the secondary index with ID A.

Since the convention for defining the index name in the database has changed
several times, some of the indexes in the database might not follow this convention.

Indexes created prior to Release 3.0 can have an 8-place name. The first 7 places
(possibly filled with underlining) are for the table names, and the eighth place is for
the (one-place) index identifier (for example TEST___A).

Indexes introduced with Release 3.0 can have a 13-place name in the database. The
first 10 places (possibly filled with underlining) are for the table names, and the 11th
to 13th places are for the three-place index identifier (for example TEST______A).

BC - ABAP Dictionary SAP AG

Customizing Includes

68 December 1999

Customizing Includes
A Customizing include is a structure that satisfies a special naming convention. The name of a
Customizing include begins with ‘CI_’ and the include lies in the customer namespace.

If enhancements are already planned in the R/3 standard using customer-specific fields, such
Customizing includes are included [Page 16]. in the corresponding standard table or standard
structure. The Customizing include (that is the definition of the structure [Page 138] itself) is
usually first created in the customer system and filled with fields by special Customizing
transactions.

Customers can thus enhance tables and structures of the R/3 standard system without
themselves having to modify the table and structure definitions. This means that these
enhancements will not be lost when upgrading. If a table or structure of the R/3 standard system
is enhanced with customer fields using a Customizing include, these customer fields are
automatically inserted in the new delivered table or structure definition during an upgrade.

Customers can but need not create a Customizing include and fill it with fields. If there is no
Customizing include, there is no error message when the table or structure including it is
activated.

A Customizing include can be contained in several tables or structures, so that they remain
consistent when the include is modified.

The order of the fields in the ABAP Dictionary can differ from the order of the fields in
the database. Inserting fields in a Customizing include does not result in a data
conversion for transparent tables containing this include (see Adjusting Database
Structures [Page 219]). The new fields of the table in the ABAP Dictionary are simply
added to the database table.

 SAP AG BC - ABAP Dictionary

Append Structures

December 1999 69

Append Structures
Append structures are used for enhancements that are not included in the standard. This
includes special developments, country versions and adding customer fields to any tables.

An append structure is a structure that is assigned to exactly one table. There can be more than
one append structure for a table.

When a table is activated, all the append structures of the table are searched and the fields in
these append structures are added to the table. If an append structure is created or changed, the
table assigned to it is also adjusted to these changes when the append structure is activated.

Since the order of the fields in the ABAP Dictionary can differ from the order of the fields in the
database, adding append structures and inserting fields in such append structures does not
result in a table conversion.

The customer creates append structures in the customer namespace. The append structure is
thus protected against overwriting during an upgrade. The fields in the append structure should
also lie in the customer namespace, that is the field names should begin with ZZ or YY. This
prevents name conflicts with fields inserted in the table by SAP.

The new versions of the standard tables are imported after an upgrade, and the fields contained
in the append structures are added to the new standard tables at activation.

A standard table contains the fields Field 1, Field 2 and Field 3. An append structure
containing the fields ZZA and ZZB is defined for this table. After activating the table,
the corresponding database table contains fields Field 1, Field 2, Field 3, ZZA and
ZZB.

Field 1 Field 2 Field 3 ZZA ZZB

Table definition in the
ABAP Dictionary

Field 2 Field 3Field 1 Append structure

Field ZZA Field ZZB

Table definition
 in the database

BC - ABAP Dictionary SAP AG

Append Structures

70 December 1999

Further Remarks:
• An append structure can only be assigned to exactly one table. If you want to append the

same fields to several tables, you can store the fields in a structure. In this case you
must create an append structure for each of these tables and include the structure there.

• Adding an append structure to an SAP standard table is supported by the Modification
Assistant [Ext.].

• If you want to insert a field that is to be delivered with the R/3 standard in the next
Release in the customer system in advance, you must include it in the table itself as a
repair. If you include such a field in an append structure for the table, it will occur twice
when the new standard table is imported. This will result in an activation error.

• No append structures may be added to tables with long fields (data types VARC, LCHR
or LRAW). This is because a long field must always be the last field in the table.
However, append structures can be added to structures with long fields.

• If a table with an added append structure is copied, the fields of the append structure
become fields of the target table.

• Foreign keys for the appended fields must be defined within the append structure. Fields
of the table assigned to the append structure may be defined when assigning the key
field and foreign key field.

• Indexes on the appended fields must be defined in the original table.

See also:
Adding Append Structures [Page 82]

 SAP AG BC - ABAP Dictionary

Creating Tables

December 1999 71

Creating Tables
Procedure

1. In the initial screen of the ABAP Dictionary, select object class Database table, enter the
table name and choose Create.

 The maintenance screen for the table is displayed.

2. Enter an explanatory short text in the field Short text.

 You can for example find the table at a later time using this short text.

3. On the Attributes tab page, enter the delivery class [Page 78] of the table.

 On this tab page, select Table maintenance allowed if users with the appropriate
authorization may change the data in the table with System → Services → Table
maintenance → Extended table maintenance. If table data should only be maintained
by program, do not set the flag.

4. On the Fields tab page, enter the table fields. Perform the following steps for each table
field:

 Enter a name for the table field in the column Fields. The field name may only contain
letters, digits and underlining, and it must begin with a letter.

 Select the Key column if the field should be part of the table key.

 Enter the name of a data element [Page 132] in field Field type. In this case the field
takes the data type, length, decimal places and short text from this data element. If there
is no suitable data element, you can go to the data element maintenance screen [Page
134] by entering a name and double-clicking.

 With Data element/Direct type, you can directly enter the data type, field length, decimal
places and short text. Press this key again if you want to enter data elements for further
fields.

 Only a limited functionality is provided for fields without data elements. No foreign keys
or fixed values may be defined for such fields, and there is no F1 help.

 You must also define the reference field and reference table [Page 15] on tab page
Currency/quantity fields for fields of types CURR (currency) and QUAN (quantity)

5. Maintain the technical settings [Page 76] for the table. The corresponding maintenance
screen is displayed with Goto → Technical settings.

 The technical settings are a separate object and can be activated and transported
separately from the table.

6. Maintain (if necessary) the foreign key relationships [Page 74] of the table to other
tables.

 The corresponding maintenance screen is displayed if you place the cursor on the check
field and choose .

7. Create (if necessary) secondary indexes for the table [Page 77].

 To do this choose Goto → Indexes.

8. Save the table.

BC - ABAP Dictionary SAP AG

Creating Tables

72 December 1999

 A dialog box appears in which you have to assign the table a development class.

9. Choose .

Result
During activation, the table and all the indexes on the table are automatically created in the
database (if not explicitly excluded when the index was defined). You can display the table
definition in the database with Utilities → Database object → Display.

At activation, the runtime object [Page 232] for the table is also created. You can display the
runtime object with Utilities → Runtime object → Display.

You can find information about the activation flow in the activation log, which you can display with
Utilities →→→→ Activation log. The activation log is displayed automatically if errors occur when the
table is activated.

Other Options
• Assigning a Field a Search Help: You can assign a field a search help with Goto →

Search help → For field. The search help can be used by all screen fields that refer to
this field. See Attaching a Search Help to a Table or Structure Field [Page 181].

• Assigning a Table a Search Help: You can assign a table a search help with Goto →
Search help → For table. This search help can be used by all screen fields that are
checked against the table. See Attaching a Search Help to a Check Table [Page 179].

• Creating Documentation: With Goto → Documentation you can create a text that
describes the use of the table and maintenance of the table data more precisely.

• Assigning the Activation Type: With Extras →→→→ Activation type you can assign the table
an activation type [Page 80]. This is only relevant for tables in the runtime environment.

• Creating or Displaying Data: If you set the Table maintenance allowed flag, you can
enter data in the table with Utilities → Table contents → Create entries. You can display
existing data with Utilities → Table contents →→→→ Display.

Constraints
• All the key fields of a table must be stored together at the beginning of the table. A non-

key field may not occur between two key fields.

• A maximum of 16 key fields per table is permitted. The maximum length of the table key
is 255.

• If the key length is greater than 120, there are restrictions when transporting table
entries. The key can only be specified up to a maximum of 120 places in a transport. If
the key is larger than 120, table entries must be transported generically.

• A table may not have more than 249 fields. The sum of all field lengths is limited to 1962
(whereby fields with data type LRAW and LCHR are not counted).

• Fields of types LRAW or LCHR must be at the end of the table. Only one such field is
allowed per table. There must also be a field of type INT2 directly in front of such a field.
The actual length of the field can be entered there by the database interface.

 SAP AG BC - ABAP Dictionary

Creating Tables

December 1999 73

See also:
Technical Settings [Page 30]

Indexes [Page 61]

Foreign Keys [Page 19]

BC - ABAP Dictionary SAP AG

Creating Foreign Keys

74 December 1999

Creating Foreign Keys
Procedure

1. In the field maintenance screen of the table, select the check field [Page 19] and choose

 If the domain [Page 155] of the check field has a value table [Page 158], you can have
the system create a proposal with the value table as check table. In this case a proposal
will be made for the field assignment in the foreign key.

 If the domain does not have a value table or if you reject the proposal, the screen for
foreign key maintenance appears without proposals. In this case, enter the check table
and save your entries. The check table must have a key field to which the domain of the
check field is assigned.

 You can then let the system make a proposal for assigning the foreign key fields to the
key fields of the check fields. The system attempts to assign the key fields of the check
table to fields of the table with the same domain. If you do not want a proposal, the key
fields of the check table are listed and you must assign them to suitable fields of the
foreign key table.

2. Enter an explanatory short text in the field Short text.

 The short text provides a technical documentation of the meaning of the foreign key.

3. Choose Copy. The foreign key is saved and you return to the maintenance screen for
the table.

Other Options
• Removing Fields from the Assignment: You can remove foreign key fields (with the

exception of the check field) from the assignment to the key fields of the check table (see
Generic and Constant Foreign Keys [Page 22]).

 Select Generic to remove a field from the check against the key fields of the check table.
If you want to assign a constant to a foreign key field, you must enter it in the Constant
field enclosed in apostrophes (for example: ‘Constant’). In both cases you must remove
the entries in fields For. key table and Foreign key field.

• Deactivating the Value Check: If the foreign key should not be used for a value check,
cancel the selection in the Check required field. This definition is valid for all screens in
which the field appears. It could be advisable to deactivate the check for example if the
foreign key is only used to define maintenance views [Page 112], help views [Page 111]
or lock objects [Page 202].

• Assigning Messages: A standard message is output if the value check by the foreign
key on the screen field results in an invalid input. You can replace this standard message
with any message. To do this, you must enter the message class of the message in the
field AArea and the message number in the field MsgNo.

• Semantic Attributes: Optionally you can define the semantic attributes [Page 24] of the
foreign key. These are primarily for documentation purposes.

 SAP AG BC - ABAP Dictionary

Creating Foreign Keys

December 1999 75

If the foreign key is derived from a field of an included table or structure (see
Includes [Page 16]), the Inherited from the include flag is also displayed. Foreign key
definitions are usually inherited from the included table or structure to the including
table or structure, so that the foreign key depends on the definition in the included
table.

The flag is normally set. If you cancel the selection, the link between the foreign key
and the included table or structure is canceled. The foreign key no longer adjusts
itself when its definition in the included table or structure changes.

See also:
Foreign Keys [Page 19]

BC - ABAP Dictionary SAP AG

Maintaining Technical Settings

76 December 1999

Maintaining Technical Settings
Procedure

1. In the field maintenance screen of the table, choose Technical settings.

 The maintenance screen of the technical settings appears.

2. Select the data class [Page 31] and size category [Page 32] of the table.

 The input help for the Size category field shows how many data records correspond to
the individual categories.

3. The buffering permission [Page 33] defines whether the table may be buffered.

 If you permitted table buffering, define the buffering type [Page 34] of the table.

 You can find further information about when to buffer tables and what buffering type you
should choose in Buffering Database Tables [Page 43].

4. Select Log data changes if you want to log changes to data records of the table (see
Logging [Page 41]).

 To log changes, system logging must be switched on with the profile parameter
rec/client. The Log data changes flag on its own does not cause the table changes to be
logged!

5. Choose .

Errors that occurred during activation are displayed in the activation log.

Other Options
The Convert to transparent table flag is displayed for pooled tables (and tables that were
converted to a transparent table with this flag at an earlier time). You can convert the pooled
table to a transparent table with this flag (see Converting Pooled Tables to Transparent Tables
[Page 42]).

Constraints
• If the key length of the table is larger than 64, the table cannot be buffered generically.

• If the key length of the table is larger than 120, the table cannot be buffered.

• If the key of the table has more than 86 places or the data part of the table has more
than 500 places, it is not possible to log the table.

See also:
Technical Settings [Page 30]

Which Tables Should be Buffered? [Page 53]

 SAP AG BC - ABAP Dictionary

Creating Secondary Indexes

December 1999 77

Creating Secondary Indexes
Procedure

1. In the maintenance screen of the table, choose Indexes.

 If indexes already exist on the table, a list of these indexes is displayed. Choose .

2. In the next dialog box, enter the index ID [Page 67] and choose

 The maintenance screen for indexes appears.

3. Enter an explanatory text in the field Short text.

 You can then use the short text to find the index at a later time, for example with the R/3
Repository Information System.

4. Select the table fields to be included in the index using the input help for the Field name
column.

 The order of the fields in the index is very important. See What to Keep in Mind for
Secondary Indexes [Page 63].

5. If the values in the index fields already uniquely identify each record of the table, select
Unique index.

 A unique index [Page 66] is always created in the database at activation because it also
has a functional meaning (prevents double entries of the index fields).

6. If it is not a unique index, leave Non-unique index selected.

 In this case you can use the radio buttons to define whether the index should be created
for all database systems, for selected database systems or not at all in the database.

7. Select for selected database systems if the index should only be created for selected
database systems.

 Click on the arrow behind the radio buttons. A dialog box appears in which you can
define up to 4 database systems with the input help. Select Selection list if the index
should only be created on the given database systems. Select Exclusion list if the index
should not be created on the given database systems. Choose .

8. Choose .

Result
The secondary index is automatically created in the database during activation if the
corresponding table was already created there and index creation was not excluded for the
database system.

You can find information about the activation flow in the activation log, which you can call with
Utilities →→→→ Activation log. If errors occurred when activating the index, the activation log is
automatically displayed.

See also:
Indexes [Page 61]

BC - ABAP Dictionary SAP AG

Delivery Class

78 December 1999

Delivery Class
The delivery class controls the transport of table data for installation, upgrade, client copy and
when transporting between customer systems. The delivery class is also used in the extended
table maintenance.

There are the following development classes:

• A: Application table (master and transaction data).

• C: Customer table, data is only maintained by the customer.

• L: Table for storing temporary data.

• G: Customer table, SAP may insert new data records but may not overwrite or delete
existing ones.

• E: System table with its own namespace for customer entries. The customer namespace
must be defined in table TRESC.

• S: System table, data changes have the status of program changes.

• W: System table (e.g. table of the development environment) whose data is transported
with its own transport objects (e.g. R3TR PROG, R3TR TABL, etc.).

Behavior during Client Copy
Only the data of client-dependent tables is copied.

• Class C, G, E, S: The data records of the table are copied to the target client.

• Class W, L: The data records of the table are not copied to the target client.

• Class A: Data records are only copied to the target client if explicitly requested
(parameter option). It normally does not make sense to transport such data, but this is
supported nevertheless to permit the entire client environment to be copied.

Behavior during Installation, Upgrade and Language Import
The behavior of client-dependent tables differs from that of cross-client tables.

Client-Dependent Tables

• Class A and C: Data is only imported into client 000. Existing data records are
overwritten.

• Class E, S and W: Data is imported into all clients. Existing data records are overwritten.

• Class G: Existing data records are overwritten in client 000. In all other clients, new data
records are inserted, but existing data records are not overwritten.

• Class L: No data is imported.

Cross-Client Tables

• Classes A, L and C: No data is imported.

• Classes E, S, and W: Data is imported. Existing data records with the same key are
overwritten.

 SAP AG BC - ABAP Dictionary

Delivery Class

December 1999 79

• Class G: Non-existent data records are inserted, but no existing data records are
overwritten.

Behavior during Transport between Customer Systems
Data records of tables having delivery class L are not imported into the target system. Data
records of tables having delivery classes A, C, E, G, S and W are imported into the target system
(for client-dependent tables this is done for the target clients specified in the transport).

Use of the Delivery Class in the Extended Table Maintenance
The delivery class is also used in the Extended Table Maintenance (SM30). The maintenance
interface generated for a table makes the following checks:

• It is not possible to transport the entered data using the transport connection of the
generated maintenance interface for tables having delivery classes W and L.

• Data that is entered is checked to see if it violates the namespace defined in table
TRESC. If the data violates the namespace, the input is rejected.

BC - ABAP Dictionary SAP AG

Activation Type

80 December 1999

Activation Type
The activation type defines whether the table can be activated directly from the ABAP Dictionary,
or whether the runtime object of the table must first be generated with a C program. This entry is
optional and only important for tables of the runtime environment.

The following entries are possible for the activation type:

• Tables having activation type 01 cannot be activated from the ABAP Dictionary. The
runtime object must be generated using a C program. The table can then be activated
from the ABAP Dictionary. This activation type ensures that important system tables
cannot be changed and activated directly.

• Tables having activation type 02 are also used in C programs. The data structure in the
C program must therefore be adjusted manually when the table is changed. There is a
relevant comment in the activation log for such tables.

• Tables having activation type 10 are needed before R3TRANS runs. Such tables must
exist before all other tables when upgrading.

• Tables having activation type 00 can be activated directly from the ABAP Dictionary. This
is the default setting for the activation type.

 SAP AG BC - ABAP Dictionary

Making Changes to Tables

December 1999 81

Making Changes to Tables
Procedure

1. Enter the table name in the initial screen of the ABAP Dictionary.

2. Select object class Database table.

3. Choose Change.

The maintenance screen for the table is displayed.

The following describe how to make changes to existing tables:

• Adding an Append Structure [Page 82]

• Inserting an Include [Page 83]

• Inserting New Fields [Page 85]

• Deleting Existing Fields [Page 88]

• Changing the Data Type, Field Length and Decimal Places of Existing Fields [Page 89]

• Changing the Table Category [Page 90]

• Moving Fields [Page 91]

• Copy Fields from Another Table [Page 92]

• Copying Fields from an Entity Type [Page 93].

• Deleting Tables [Page 94]

BC - ABAP Dictionary SAP AG

Adding an Append Structure

82 December 1999

Adding an Append Structure
Procedure

1. Go to change mode in the maintenance screen of the table where you want to add the
append structure.

 If the table contains a long field (data type VARC, LCHR or LRAW), you cannot add an
append structure.

2. Choose Goto →→→→ Append structures.

 Either a dialog box appears in which you can enter the name of the append structure or a
list of all the append structures [Page 69]. that were already created for the table
appears. If append structures already exist, you have to choose to get the dialog box
for entering the name.

3. Enter the append structure name and choose . The name must lie in the customer
namespace.

 You go to the field maintenance screen of the append structure.

4. Create the append structure. You can proceed as when creating a normal structure with
two restrictions (see Creating Structures [Page 140]).

 The fields of an append structure must lie in the customer namespace, that is the field
names must begin with ZZ or YY. This prevents conflicts with fields inserted in the table
by SAP.

 An append structure must be flat, that is each field of the append structure must either
refer to a data element or be directly assigned a data type, length, decimal places and
short text.

5. Choose .

Result
The table is also activated when the append structure is activated. The fields of the append
structure are added to the table in the database.

You can display information about the activation process with Utilities → Activation log. Errors
occurring when the append structure is activated are displayed directly in the activation log.

See also:
Append Structures [Page 69]

 SAP AG BC - ABAP Dictionary

Inserting an Include

December 1999 83

Inserting an Include
Prerequisites
Only flat structures may be included in a table. No field refers to another structure in a flat
structure. All the fields of a flat structure therefore refer either to a data element or were directly
assigned a data type, field length and decimal places.

Procedure
1. Place the cursor under the line in which you want to insert the include [Page 16] and

choose Edit →→→→ Include →→→→ Insert.

 A dialog box appears.

2. Enter the structure name. You can optionally enter a group name (see Named Includes
[Page 142]) or a three-place suffix.

 With the group name, you can access the fields in the include together in ABAP
programs.

 The suffix can be used to avoid name collisions between fields of the include and fields
already in the table. The suffix is added to all the fields of the include, whereby the field
name is first truncated if necessary.

3. Choose .

 A line with .INCLUDE in the Fields field and the name of the include in the Field type field
is inserted in the field maintenance screen for the table.

4. Select column Key if all the fields in the include should be key fields of the table.

 The table key must be at the start of the field list. If you select column Key, you must
insert the include after the last key field or between the existing key fields of the table.

 If you do not select column Key, none of the included fields is a key field of the table.

5. Choose .

Result
The fields of the include are added to the table in the database. If you inserted the fields of the
include as key fields, the primary index [Page 61] of the table is built again.

You can find information about the activation flow in the activation log, which you can display with
Utilities →→→→ Activation log. The activation log is displayed immediately if errors occur when the
table is activated.

Other Options
You can display the fields contained in an include by placing the cursor on the line of the include
and choosing . The fields of the include are now shown below this line. You can cancel this
action with .

You can expand all the includes contained in a table with . Cancel this action with .

BC - ABAP Dictionary SAP AG

Inserting an Include

84 December 1999

You can copy the fields contained in the include directly to the table with Edit →→→→ Include →→→→ Copy
components. The fields of the include become table fields. They are no longer adjusted to
changes in the include.

See also:
Includes [Page 16]

 SAP AG BC - ABAP Dictionary

Inserting New Fields

December 1999 85

Inserting New Fields
Procedure

1. In the maintenance screen for the table, place the cursor on the field in front of which the
new field should be inserted and choose Insert line. You can append several new fields
at the end of the table with New lines.

 An empty line appears in which you can insert the new field. Creating Tables [Page 71].
describes how to add a field to a table.

2. Set the Init flag if the new field should be created in the database as NOT NULL.

 In this case the entire is scanned during activation and the new field is filled with the
initial value [Page 86]. This can be very time-consuming for large tables.
 Key fields are always defined as NOT NULL. When a new key field is inserted, the
primary index of the table is built again in the database.

3. Choose .

Result
The new field is added to the table when it is activated in the database. This does not depend on
the position of the new field in the field list of the table, that is the order of the fields in the ABAP
Dictionary does not have to be the same as in the database.

If the table is a check table of a foreign key [Page 19], new key fields can only be
appended to the previous primary key. When the table is activated, the foreign keys
concerned are defined as generic with regard to the new key fields. The foreign keys
changed in this way are listed in the activation log.

Inserting a client field results in a table conversion (see Adjusting Database
Structures [Page 219]). The data in the table is copied to all the clients listed in client
table T000.

If the table is a check table of a foreign key, it is not possible to insert a client field. In
this case you must first delete the existing foreign keys.

BC - ABAP Dictionary SAP AG

Initial Values

86 December 1999

Initial Values
If the value of a field in a data record is undefined or unknown, it is called a NULL value. NULL
values occur when new fields are inserted in existing tables or with inserts on database views
[Page 105].

If a new field is inserted in a table which already exists in the database, this operation is
performed with the DDL statement

ALTER TABLE table name ADD FIELD field name ...

in the database. The new field of records that already exist have a NULL value. If there is an
INSERT on a table using a database view, NULL values are inserted in all the fields of the table
that are not contained in the view.

NULL values do not have any disadvantages as long as the corresponding field is not selected. If
a field with NULL values is selected, some of the entries satisfying the selection condition might
not be found. This is because NULL values only satisfy the selection condition WHERE FIELD IS
NULL.

Field Field1 is inserted in table TAB. If this table is accessed with the SELECT...
FROM TAB WHERE Field1 <> 5... statement, records with NULL values are not
found in Field1 even though they logically correspond to the WHERE condition of the
SELECT statement.

The case described in the example can be avoided by defining the inserted field as Initial. The
field is thus created in the database as NOT NULL. The entire table is scanned when it is
activated and the new field is filled with the initial value. This can be very time-consuming! You
should therefore only use the Initial flag if it is really needed or if the table only has a few entries.

The initial values depend on the data type of the field.

Data type Initial Value

ACCP, CHAR, CUKY, LANG, UNIT ” ” space

CURR, DEC, FLTP, INT1, INT2, INT4, QUAN 0

CLNT 000

TIMS 000000

DATS 00000000

NUMC 00000... for field length <= 32
no initial value for field length >
32

LRAW, LCHR, RAW, VARC no initial value

A field can also be created in the database as NOT NULL if the initial flag is not set in the ABAP
Dictionary! You can find out if a field is defined as NOT NULL in the database with Utilities →
Database object → Display in the maintenance screen of the corresponding table.

 SAP AG BC - ABAP Dictionary

Initial Values

December 1999 87

When a table is created, all the fields of the table are defined as NOT NULL and filled with the
default value. The same is true when the table is converted. The fields are only created as NOT
NULL if new fields are added or inserted. An exception is key fields, as the Initial flag is
automatically set here.

If the Initial flag for an include [Page 16] is set, the structure fields whose initial flag is
set also have this attribute in the table. If the Initial flag is not set, NULL values are
permitted for all the fields of the include.

Fields with data types LCHR, LRAW, RAW and NUMC fields with a field length
greater than 32 cannot be defined as Initial.

BC - ABAP Dictionary SAP AG

Deleting Existing Field

88 December 1999

Deleting Existing FieldTo delete one field from a table, place the cursor on the
corresponding line and choose Delete line. Choose .

If the table in the database already contains data, you have to convert the table after
deleting existing fields (see Adjusting Database Structures [Page 219]).

If you delete key fields of the table, data could be lost during conversion. If the table
contains data records that only differ in the deleted key field, only one of these data
records can be loaded back into the table.

You cannot delete a field used as a reference field in another table. In this case you
must first remove all the uses of the field as a reference field (see Reference Fields
and Reference Tables [Page 15]).

You cannot delete key fields of the table if the table is the check table. In this case
you must first delete the corresponding foreign keys.

You can determine all the tables that use the particular table as check table or
reference table with .

 SAP AG BC - ABAP Dictionary

Changing Data Types and Lengths of Existing Fields

December 1999 89

Changing Data Types and Lengths of Existing Fields
If a data element [Page 132] is assigned to the field, you must change the technical field
attributes (data type, length, number of decimal places) in the domain of the data element.

Procedure for Fields with Data Elements
1. Double-click on the name of the data element.

The data element maintenance screen appears.

2. Double-click on the name of the domain.

The domain maintenance screen appears.

3. Choose Domain → Display → Change.

Make the required changes and save your entries.

Note that this change affects all the table fields that refer to the particular domain.
Foreign keys could become inconsistent and conversions required. You should therefore
consider the effects of this action before changing the domain by choosing in the
maintenance screen of the domain and checking if the domain is used in other tables.

4. Choose .

The table is activated again and the table field is adjusted to the domain change.

Procedure for Fields with Direct Type Entry
1. Place the cursor on the field and choose Data element / Direct type.

Values can now be entered in fields Data type, Length, DecPlaces and Short text.

2. Change the entries for the data type, length and possibly the number of decimal places.

Save your entries.

3. Choose .

Note that a table conversion will normally be necessary (see Adjusting Database
Structures [Page 219]) if you change the field attributes.

BC - ABAP Dictionary SAP AG

Changing the Table Category

90 December 1999

Changing the Table Category
Prerequisites
Depending on the category of the change, note the following features:

• Transparent to structure: The table is deleted from the database at activation. Existing
data is lost. Any technical settings for the table are also lost.

• Pooled/cluster to transparent: Since technical settings are meaningless for pooled and
cluster tables, you must maintain them before activating the transparent table.

• Transparent to pooled/cluster: You must define the assignment to the table pool or
table cluster in which the table data should be stored.

Procedure
1. In the field maintenance screen of the table, choose Extras →→→→ Change table category.

 A dialog box appears in which the current table category (transparent database table,
structure, pooled table, cluster table) is selected.

2. Select your table category and choose Select.

 You return to the field maintenance screen for the table.

3. Choose .

In addition to the above procedure, you can also change the table category for
pooled tables with the transparent flag [Page 42] .

Changing a pooled/cluster table to a transparent table and vice versa always results
in a table conversion (see Adjusting Database Structures [Page 219]).

See also:
Pooled and Cluster Tables [Page 256]

 SAP AG BC - ABAP Dictionary

Moving Fields

December 1999 91

Moving Fields
Procedure

1. Place the cursor on the field to be moved and choose .

 The selected field is deleted and copied to the clipboard.

2. Place the cursor on the field in front of which you want to insert the selected field and
choose .

The field is inserted in the table at the new position.

The order of the fields in the ABAP Dictionary can differ from the order of the fields in
the database. Changing the order of the fields (with the exception of key fields) in the
ABAP Dictionary therefore does not result in a change in the database. In particular,
a table conversion is not required (see Adjusting Database Structures [Page 219]).

If the table is a check table, you cannot change the order of the key fields. In this
case you must first delete the corresponding foreign keys.

BC - ABAP Dictionary SAP AG

Copying Fields from Another Table

92 December 1999

Copying Fields from Another Table
You can copy fields or blocks of fields from another table.

Procedure
1. In the maintenance screen of the table choose Edit →→→→ Copy fields.

Enter the name of the table from which you want to copy the fields in the next dialog box.

2. Choose Field selection.

A list of the fields contained in this table appears.

3. Place the cursor on the first field of the block to be copied and choose Select block.

If you want to copy only single fields, place the cursor on these fields and choose Select.

4. Place the cursor on the last field of the block to be copied and again choose Select
block.

All the fields of the selected block are highlighted.

5. Choose Copy.

The selected block or the selected single fields are copied to a buffer, and you return to
the field maintenance screen.

6. Place the cursor on the field in front of which you want to insert the new fields and
choose .

 The selected fields are inserted in the table.

7. Choose .

See also:
Inserting New Fields [Page 85]

 SAP AG BC - ABAP Dictionary

Copying Fields from an Entity Type

December 1999 93

Copying Fields from an Entity Type
Procedure

1. In the field maintenance screen of the table choose Edit →→→→ Att. from ent. type.

A dialog box appears.

2. Enter the name of the entity type from which you want to copy attributes to the table.
Choose Field selection.

A dialog box appears listing all the attributes of the entity type.

3. Select the attributes that you want to copy. Select the corresponding entry in the list and
choose Choose.

The entry is highlighted.

Note that only the explicit attributes of the entity type can be copied with this function.
Only these explicit attributes are displayed. Explicit attributes are the attributes that were
not copied from the table assigned to the entity type. This means that only those
attributes that were entered directly in the Data Modeler can be copied.

4. Select all the fields you want and choose Copy.

The attributes are now copied to the clipboard.

5. Place the cursor on the field in front of which you want to insert the fields and choose .

The selected fields are inserted in the table.

See also:
Inserting New Fields [Page 85]

Data Modeler: Overview and Modeling Principle [Ext.] (data modeling, entity types)

BC - ABAP Dictionary SAP AG

Deleting Tables

94 December 1999

Deleting Tables
Prerequisites
A table can only be deleted in the ABAP Dictionary when it is no longer used in any other objects
(for example views or programs).

Procedure
1. In the initial screen of the ABAP Dictionary, select the object type Database table and

enter the name of the table.

 With the where-used list , check if the table is still used in programs or other objects of
the ABAP Dictionary.

2. Choose .

 A dialog box appears in which you are asked to confirm the deletion request. This dialog
box tells you if the table still contains data.

3. Confirm the deletion request.

Result
The table is now deleted if it is no longer being used in other objects of the ABAP Dictionary.

 SAP AG BC - ABAP Dictionary

Views

December 1999 95

Views
Data about an application object is often distributed on several tables. By defining a view, you
can define an application-dependent view that combines this data. The structure of such a view is
defined by specifying the tables and fields used in the view. Fields that are not required can be
hidden, thereby minimizing interfaces. A view can be used in ABAP programs for data selection.

F3F2F1 F4 F5 F6 F7 F8

Table 3
Table 2

Table 1

View on the tables

View on data that is
distributed on more
than one table

F1 F2 F3 F5 F8

The data of a view is derived from one or more tables, but not stored physically. The simplest
form of deriving data is to mask out one or more fields from a base table (projection) or to include
only certain entries of a base table in the view (selection). More complicated views can comprise
several base tables, the individual tables being linked with a relational join operation. See also
Join, Projection and Selection [Page 97].

The base tables of the view must be selected in the first step of a view definition. In the second
step, these tables must be linked by defining the join conditions. It is also possible to use the join
condition from a foreign key defined between the tables (see Foreign Key Relationship and Join
Condition [Page 102]). In the third step, you must select the fields of the base tables to be used
in the view. Selection conditions that restrict the records in the view can be formulated in the
fourth step.

Four different view types are supported. These differ in the way in which the view is implemented
and in the methods permitted for accessing the view data.

• Database views [Page 106] are implemented with an equivalent view on the database.

• Projection views [Page 110] are used to hide fields of a table (only projection).

• Help views [Page 111] can be used as selection method in search helps [Page 166].

• Maintenance views [Page 112] permit you to maintain the data distributed on several
tables for one application object at one time.

BC - ABAP Dictionary SAP AG

Views

96 December 1999

Database views implement an inner join. The other view types implement an outer join (see
Inner and Outer Join [Page 101]).

The join conditions for database views can be formulated using equality relationships between
any base fields. The join conditions for the other view types must be obtained from existing
foreign keys. Tables therefore can only be combined in a maintenance view or help view if they
are linked to one another with foreign keys.

The maintenance status [Page 103] defines whether you can only read data with the view or
whether you can also insert and change data with it.

See also:
Example for Views [Page 127]

Creating Views [Page 115]

Deleting Views [Page 126]

 SAP AG BC - ABAP Dictionary

Join, Projection and Selection

December 1999 97

Join, Projection and Selection
This example shows the structure of a view with the relational operators join, projection and
selection.

Given two tables TABA and TABB. Table TABA has 2 entries and table TABB has 4 entries.

Table TABA Table TABB

1 1
12
2
2

Text 1 Text 3
Text 4
Text 5

Text 2

Text 6

A

A
B

B

Field 1 Field 2 Field 3 Field 4 Field 5

Field 1 Field 2 Field 3 Field 4 Field 5

1 Text 1
1 Text 1
1 Text 1
1 Text 1
2 Text 2
2 Text 2
2 Text 2
2 Text 2

1
1
2
2

Text 3
Text 4
Text 5
Text 6

A

A
B

B
1
1
2
2

Text 3
Text 4
Text 5
Text 6

A

A
B

B

Cross product of tables
TABA and TABB

Each record of TABA is first combined with each record of TABB. If a join condition is not
defined, the cross product of tables TABA and TABB is displayed with the view.

Join Conditions
The entire cross product is not usually a sensible selection. The cross product must therefore be
restricted with join conditions. A join condition describes how the records of the two tables are
connected.

In our example, Field 1 of TABA must be identified with Field 3 of TABB. The join condition is
therefore TABA-Field 1 = TABB-Field 3. This join condition removes all records for which the
entry in Field 1 is not identical to the entry in Field 3 from the cross product. The column for Field
3 in the view is not required.

BC - ABAP Dictionary SAP AG

Join, Projection and Selection

98 December 1999

Join condition: TABA - Field 1 = TABB - Field 3

Field 1 Field 2 Field 3 Field 4 Field 5

1 Text 1
1 Text 1
1 Text 1
1 Text 1
2 Text 2
2 Text 2
2 Text 2
2 Text 2

1
1
2
2

Text 3
Text 4
Text 5
Text 6

A

A
B

B
1
1
2
2

Text 3
Text 4
Text 5
Text 6

A

A
B

B

Reduce the cross product by all records in which the
entry in Field 1 is not the same as the entry in Field 3.

Projection
Sometimes some of the fields of the tables involved in a view are not of interest. The set of fields
used in the view can be defined explicitly (projection). In our example, Field 4 is of no interest
and can be hidden.

 SAP AG BC - ABAP Dictionary

Join, Projection and Selection

December 1999 99

Field 1 Field 2 Field 4 Field 5

1 Text 1
1 Text 1
2 Text 2
2 Text 2

Text 3
Text 4

A
B

Text 5
Text 6

A
B

Field 1 Field 2 Field 5

1 Text 1
1 Text 1
2 Text 2
2 Text 2

Text 3
Text 4
Text 5
Text 6

Projection
Select the relevant fields

Selection Conditions
Selection conditions that are used as a filter can be defined for a view.

Restrictions can be defined for the contents of the view fields in selection conditions. In this case,
only the data records that satisfy these restrictions can be selected with the view. In a selection
condition, the contents of a view field are compared with a constant using a comparison operator.
Several selection conditions can be linked with the logical operators AND and OR.

In our example, only the records that have the value A in Field 4 should be displayed with the
view. In this case the selection condition is therefore TABB-Field 4 = 'A'.

A selection condition can therefore be formulated with a field that is not contained in the view.

BC - ABAP Dictionary SAP AG

Join, Projection and Selection

100 December 1999

Selection condition: TABB - Field 4 = ‘A’.

Field 1 Field 2 Field 5

1 Text 1
1 Text 1
2 Text 2
2 Text 2

Text 3
Text 4
Text 5
Text 6

Field 1 Field 2 Field 5

1 Text 1
1 Text 1
2 Text 2
2 Text 2

Text 3
Text 4
Text 5
Text 6

A
B
A
B

Field 4

See also:
Inner Join and Outer Join [Page 101]

 SAP AG BC - ABAP Dictionary

Inner Join and Outer Join

December 1999 101

Inner Join and Outer Join
The data that can be selected with a view depends primarily on whether the view implements an
inner join or an outer join. With an inner join, you only get the records of the cross-product for
which there is an entry in all tables used in the view. With an outer join, records are also selected
for which there is no entry in some of the tables used in the view.

The set of hits determined by an inner join can therefore be a subset of the hits determined with
an outer join.

Database views implement an inner join. The database therefore only provides those records for
which there is an entry in all the tables used in the view. Help views and maintenance views,
however, implement an outer join.

Field 1 Field 2 Field 4

A Text 1
B Text 2

Text 3
Text 4

Field 1 Field 2 Field 4

A Text 1
B Text 2

Text 3
Text 4

C Text 5

What about the view is displayed?

Inner join Outer join

Table TABA Table TABB

A A
BB

Text 1 Text 3
Text 4Text 2

Field 1 Field 2 Field 3 Field 4

C Text 5

Join condition

BC - ABAP Dictionary SAP AG

Foreign Key Relationship and Join Condition

102 December 1999

Foreign Key Relationship and Join Condition
If there is already a suitable foreign key between two tables used in the view, these tables can be
linked with a join condition from this foreign key.

Create a view on tables TAB1 and TAB2. TAB1 is the primary table of the view.
TAB2 is the secondary table of the view. TAB1 is the check table for TAB2. The
foreign key fields are assigned to the check table fields as follows:

TAB1-FIELD_A assigned to TAB2-FIELD_1
TAB1-FIELD_A assigned to TAB2-FIELD_1

The join condition of the view generated from the foreign key is then:

CREATE VIEW ... AS SELECT ... WHERE TAB2-FIELD_1 = TAB1-FIELD_A AND
TAB2-FIELD_2 = TAB1-FIELD_B.

Join conditions can also be copied from generic and constant foreign keys. If a constant is
assigned to a field in the foreign key, it is also assigned to the field in the join condition. There is
no join condition for a generic relationship in the foreign key.

The foreign key between tables TAB1 (check table) and TAB2 (foreign key table) is
defined as follows:

TAB1-FIELD_A assigned to TAB2-FIELD_1
TAB1-FIELD_B generic
TAB1-FIELD_C assigned to constant ‘C’

The join condition for the view generated from the foreign key is in this case:

CREATE VIEW ... AS SELECT ... WHERE TAB2-FIELD_1 = TAB1-FIELD_A AND
TAB2-FIELD_2 = ‘C’.

 SAP AG BC - ABAP Dictionary

Maintenance Status

December 1999 103

Maintenance Status
The maintenance status of a view controls whether data records can also be changed or
inserted in the tables contained in the view.

The maintenance status can be defined as follows:

• read only: Data can only be read with the view.

• read, change, delete and add: Data of the tables contained in the view can be changed,
deleted and inserted with the view.

Only read access is permitted for database views [Page 106] that are defined over several
tables. If a database view contains only one single table, data can be inserted in this table with
the view (see Inserts in Database Views [Page 105]).

The following status definitions are possible for maintenance views [Page 112]:

• read and change: Existing view entries can be changed. Records cannot be deleted or
inserted.

• read and change (time-dependent views) : Only entries whose non-time-dependent
part [Page 104] of the key is the same as that of existing entries may be inserted.

BC - ABAP Dictionary SAP AG

Time-Dependent Key Components

104 December 1999

Time-Dependent Key Components
The key of some views can be divided into a non-time-dependent and a time-dependent
component. The records of these views have a time-dependent meaning.

The prices of services change depending on the date. A view contains the service
code, a date field and a field for the price. The field for the service code is the non-
time-dependent component of the key and the field for the date is the time-
dependent component of the key.
If maintenance status read and change (time-dependent views) was selected for
the view, only records that have the same service code as existing records can be
inserted with the view. You can also enter a new price for an existing service as of a
new date. However, you cannot insert records if they do not yet have a service code.
New services therefore cannot be inserted with the view.

Service Date Price

01
01
01
02
02
04
04
08
08

1.1.1997
1.6.1997
1.9.1997
1.6.1997
1.9.1997
1.3.1997
1.7.1997
1.1.1997
1.9.1997

100
105
108
20
22
205
217
70
85

1031.11.199701

301.1.199707

Insertion allowed

Insertion not allowed

Time-
dependent key

Non-time-
dependent key

 SAP AG BC - ABAP Dictionary

Inserts with Database Views

December 1999 105

Inserts with Database Views
If a database view contains only one single table, data can be inserted in this table with the view
(see maintenance status [Page 103]). You have the following options for the contents of the table
fields not contained in the view:

• If the field is defined on the database with NOT NULL as initial value, the field is filled
with the corresponding initial value.

• If the field is defined on the database as NOT NULL without initial value, an insert is not
possible. This results in a database error.

• If the field is not defined on the database as NOT NULL, there will be a NULL value in
this field.

You should therefore only insert data in the table with a database view if initial values [Page 86]
are defined for all the table fields not contained in the view.

Changing data records that already exist with a database view is not critical if the database view
contains all the key fields of the table.

When you insert data records with maintenance views [Page 112] or projection views [Page 110],
all the table fields not contained in the view are assigned the default value of the field. This does
not depend on whether the field is defined in the database as NOT NULL. This avoids NULL
values in these fields.

BC - ABAP Dictionary SAP AG

Database Views

106 December 1999

Database Views
Data about an application object is often distributed on several database tables. A database view
provides an application-specific view on such distributed data.

Database views are defined in the ABAP Dictionary. A database view is automatically created in
the underlying database when it is activated.

Application programs can access the data of a database view using the database interface. You
can access the data in ABAP programs with both OPEN SQL and NATIVE SQL. However, the
data is actually selected in the database. Since the join operation is executed in the database in
this case, you can minimize the number of database accesses in this way. Database views
implement an inner join (see Inner and Outer Join [Page 101]).

F3F2F1 F4 F5 F6 F7 F8

Table 3
Table 2

Table 1

View definition in ABAP Dictionary

View definition on
the database

F1 F2 F3 F5 F8

Created on DB
at activation

ABAP program

Database interface

F1 F2 F3 F5 F8

If the database view only contains a single table, the maintenance status [Page 103] can be used
to determine if data records can also be inserted with the view. If the database view contains
more than one table, you can only read the data.

Database views should be created if want to select logically connected data from different tables
simultaneously. Selection with a database view is generally faster than access to individual
tables. When selecting with views, you should also ensure that there are suitable indexes on the
tables contained in the view.

Since a database view is implemented in the database, a database view may only contain
transparent tables.

The technical settings of a database view [Page 109] control whether the view data should be
buffered.

See also:
Creating Database Views [Page 116]

 SAP AG BC - ABAP Dictionary

Database Views

December 1999 107

Includes in Database Views [Page 108]

BC - ABAP Dictionary SAP AG

Includes in Database Views

108 December 1999

Includes in Database Views
An entire table can be included in a database view. In this case all the fields of the included table
will become fields of the view (whereby you can explicitly exclude certain fields). If new fields are
included in the table or existing fields are deleted, the view is automatically adjusted to this
change. A new or deleted field is thus included in the view or deleted from the view in this case.

F 2 F 3F 1 F 5 F 6F 4 F 8F 7

TABB
included
in view

F 1 F 3 F 4 F 5 F 8F 6

Database view on TABA, TABB and TABC

TABBTABA TABC

To include one of the tables in the view, enter character * in field View field, the name of the table
to be included in field Table and character * again in field Field name on the View fields tab page
of the maintenance screen of the view.

You can also exclude individual fields of an included table. If you do not want to include a field of
the included table in the view, enter - in field View field, the name of the included table in field
Table and the name of the field to be excluded in field Field name.

 SAP AG BC - ABAP Dictionary

Technical Settings of a Database View

December 1999 109

Technical Settings of a Database View
You can buffer the data read from an ABAP program with a database view. View data is buffered
completely analogously to table data (see Buffering Database Tables [Page 43]).

The technical settings of a database view control whether view data may be buffered (see
Buffering Permission [Page 33]) and how this should be done (see Buffering Types [Page 34]).
The same settings are possible as when buffering tables.

The buffered view data is invalidated as soon as data in one of the base tables of the view
changes.

BC - ABAP Dictionary SAP AG

Projection Views

110 December 1999

Projection Views
Projection views are used to hide fields of a table. This can minimize interfaces; for example
when you access the database, you only read and write the field contents actually needed.

A projection view contains exactly one table. You cannot define selection conditions for projection
views.

There is no corresponding object in the database for a projection view. The R/3 System maps the
access to a projection view to the corresponding access to its base table. You can also access
pooled tables and cluster tables with a projection view.

F3F2F1
DB table

F1 F2 F3 F4 F5 Table definition in
the ABAP Dictionary

F1 F2 F5 Projection view
on table

F4 F5

Access to data with
database interface

The maintenance status [Page 103] of the view controls how the data of the table can be
accessed with the projection view.

See also:
Creating Projection Views [Page 120]

 SAP AG BC - ABAP Dictionary

Help Views

December 1999 111

Help Views
You have to create a help view if a view with outer join [Page 101] is needed as selection method
of a search help [Page 166].

The selection method of a search help is either a table or a view. If you have to select data from
several tables for the search help, you should generally use a database view as selection
method. However, a database view always implements an inner join. If you need a view with
outer join for the data selection, you have to use a help view as selection method.

Field 1

Field 2

. . .

001

F4F4

TAB1 TAB2

Search help for field

Help view as
selection method

Selection
from hit list

All the tables included in a help view must be linked with foreign keys. Only foreign keys that
have certain attributes can be used here (see Restrictions for Maintenance and Help Views
[Page 114]).

The functionality of a help view changed significantly between Release 3.0 and
Release 4.0! In Release 3.0, a help view was automatically displayed for the input
help (F4 help) for all the fields that were checked against the first table (primary
table) of the help view. This is no longer the case in Release 4.0.

As of Release 4.0, you must explicitly create a search help that must be linked with
the fields for which it is offered (see Linking Search Helps with Screen Fields [Page
176]).

See also:
Creating Help Views [Page 118]

BC - ABAP Dictionary SAP AG

Maintenance Views

112 December 1999

Maintenance Views
Maintenance views offer easy ways to maintain complex application objects.

Data distributed on several tables often forms a logical unit, for example an application object, for
the user. You want to be able to display, modify and create the data of such an application object
together. Normally the user is not interested in the technical implementation of the application
object, that is in the distribution of the data on several tables.

A maintenance view permits you to maintain the data of an application object together. The data
is automatically distributed in the underlying database tables. The maintenance status [Page 103]
determines which accesses to the data of the underlying tables are possible with the
maintenance view.

All the tables in a maintenance view must be linked with foreign keys, that is the join conditions
for maintenance views are always derived from the foreign key (see Foreign Key Relationship
and Join Condition [Page 102]). You cannot directly enter the join conditions as for database
views.

There are some restrictions for the attributes of the foreign keys with which the tables in a
maintenance view can be linked (see Restrictions for Maintenance and Help Views [Page 114]).

Maintenance view
on the tables

Application object

Data exchange with
the maintenance view

F3F2F1 F4 F5 F6 F7 F8
Table 3Table 2

Table 1

Foreign key Foreign key

F1 F2 F3 F5 F8

A standardized table maintenance transaction is provided (SM30), permitting you to maintain the
data from the base tables of a maintenance view together.

Maintenance mechanisms, like screens and processing programs, must be created from the view
definition with the transaction Generate Table View (SE54). This makes it possible to create
easy-to-use maintenance interfaces in a simple manner.

You can find out how to create such maintenance mechanisms in the documentation BC -
Generate Table Maintenance Dialog [Ext.].

 SAP AG BC - ABAP Dictionary

Maintenance Views

December 1999 113

F3F2F1 F4 F5 F6 F7 F8

Foreign key Foreign key

Maintenance view on the tables

A B C DB D E

F1 F2 F3 F5 F8
Input mask
generated from
the maintenance
view

F1

F2 F5

F8F3 E

A

B

C

D

See also:
Creating Maintenance Views [Page 121]

Maintenance Status [Page 103]

BC - ABAP Dictionary SAP AG

Restrictions for Maintenance and Help Views

114 December 1999

Restrictions for Maintenance and Help Views
There are some restrictions for selecting the secondary tables of a maintenance view or help
view. The secondary tables have to be in an N:1 dependency to the primary table or directly
preceding secondary table. This ensures that there is at most one dependent record in each of
the secondary tables for a data record in the primary table.

Primary table

Secondary table 2

Secondary table 3

Secondary table 5

Secondary table 4

Secondary table 1

N:1 Dependency

N:1 Dependency N:1 Dependency

N:1 Dependency

N:1 Dependency

A N:1 dependency exists if the secondary table is the check table in the foreign key [Page 19]
used. If the secondary table is the foreign key table, the foreign key fields must be Key fields of a
table or the foreign key must have the cardinality N:1 or N:C (see Semantic Attributes of a
Foreign Key [Page 24]).

 SAP AG BC - ABAP Dictionary

Creating Views

December 1999 115

Creating Views
The procedure for creating a view depends on the view type.

Procedure
1. Select object class View in the initial screen of the ABAP Dictionary, enter the view name and

choose Create.

A dialog box appears in which you must select the view type.

2. You go to the maintenance screen of the selected view type with Choose.

The procedure to be followed (depending on the view type) is described in:

• Creating Database Views [Page 116]

• Creating Maintenance Views [Page 121]

• Creating Help Views [Page 118]

• Creating Projection Views [Page 120]

BC - ABAP Dictionary SAP AG

Creating a Database View

116 December 1999

Creating a Database View
Procedure

1. Enter an explanatory short text in the field Short text.

 You can for example find the view at a later time using this short text.

2. Define the tables to be included in the view in the Tables field of the Tables/Join
conditions tab page.

 Keep in mind that you can only include transparent tables in a database view.

3. Link the tables with join conditions [Page 97].

 If there are suitable foreign keys between the tables, you should copy the join conditions
from these foreign keys (see Foreign Key Relationships and Join Conditions [Page 102]).

 Place the cursor on a table name and choose Relationships. All foreign keys to other
tables defined for this table are displayed. Select the foreign keys and choose Copy.
The join condition is now derived from the definitions in the foreign key.

 If you only want to see the foreign key relationship existing between two tables, you must
first select these two tables (click on the first column of the input area Tables) and then
choose Relationships.

4. On the View fields tab page, select the fields that you want to copy to the view.

 Choose Table fields. All the tables contained in the view are displayed in a dialog box.
Select a table. All the fields contained in this table are displayed. You can copy fields by
selecting them in the first column and choosing Copy.

 You can also include an entire table in the view (see Includes in Database Views [Page
108]).

5. On the Selection conditions tab page, you can (optionally) formulate restrictions for the
data records to be displayed with the view (see Maintaining Selection Conditions for
Views [Page 125]).

 The selection conditions define the data records that can be selected with the view.

6. With Goto → Technical settings, you can (optionally) maintain the technical settings of
the database view.

 You can define whether and how the database view should be buffered here. Proceed as
for the technical settings of a table (see Maintaining Technical Settings [Page 76]). Note
that only the settings for buffering can be maintained for database views.

7. On the Maintenance status tab page, select the maintenance status [Page 103] of the
database view.

 If the view contains more than one table, the maintenance status read only cannot be
altered.

8. Save your entries. You are asked to assign the view a development class.

 You can change this development class later with Goto → Object directory entry.

9. Choose .

 SAP AG BC - ABAP Dictionary

Creating a Database View

December 1999 117

Result
When a database view is activated, the corresponding view is also automatically created in the
database if the base tables of the view were already created there.

At activation, a log is written; it can be displayed with Utilities → Activation log. If errors or
warnings occurring when the view was activated, they are displayed directly in the activation log.

If the base tables are not yet created in the database, this is recorded in the activation log. The
view is nevertheless activated in the ABAP Dictionary. In this case you can create the relevant
view on the database later with the database utility.

Other Options
• Create documentation: You can create information about using the view with Goto →

Documentation. This documentation is also output for example when you print the view.

• Change data element of a view field: Select the Mod (Modify) column in the View fields
tab page. The Data element field is now ready for input. You can enter a data element
that refers to the same domain as the data element of the assigned table field here.
Cancel the Mod flag if you want to use the data element of the assigned table field again.

• Display view data: With Utilities → Contents you can determine which data can be
selected with the view.

• Display create statement: With Extras → CREATE statement you can display how the
view was created in the database. The statement that was executed when the version of
the view currently being edited was created in the database is displayed.

• Check the definition of the view in the database: With Utilities → Database object →
Check you can determine whether the definition of the view in the database is consistent
with the active version of the view. With Utilities → Database object → Display you can
display the definition of the view in the database.

• Check the runtime object of the view: With Utilities → Runtime object → Check you
can determine whether the definition of the view in the ABAP Dictionary maintenance
screen is identical to the specifications in the runtime object of the view. With Utilities →
Runtime object → Display you can display the runtime object of the view.

See also:
Database Views [Page 106]

BC - ABAP Dictionary SAP AG

Creating Help Views

118 December 1999

Creating Help Views
Procedure

1. Enter an explanatory short text in the field Short text.

 You can for example find the view at a later time using this short text.

2. Enter the primary table of the view under Tables in the Tables/Join conditions tab page.

 Only tables that are linked with the primary table (indirectly) with a foreign key can be
included in the view.

3. Save your entries.

 You are asked to assign the help view a development class. You can change this
development class later with Extras → Object directory entry.

4. If required, include more tables in the view. In a help view you can only include tables
that are linked to one another with foreign keys.

 Position the cursor on the primary table and choose Relationships. All existing foreign
key relationships of the primary table are displayed. Select the foreign keys and choose

Copy. The secondary table involved in such a foreign key is included in the view. The
join conditions derived from the foreign keys (see Foreign Key Relationship and Join
Condition [Page 102]) are displayed.

 You can also include tables that are linked with a foreign key to one of the secondary
tables already included. To do this, place the cursor on the secondary table and choose
Relationships. Then proceed as described above.

 For maintenance and help views, there are certain restrictions on the foreign keys with
which the tables can be included in the view (see Restrictions for Maintenance and Help
Views [Page 114]). The foreign keys violating these conditions are displayed at the end
of the list under the header Relationships with unsuitable cardinality.

5. On the View fields tab page, select the fields that you want to copy to the view. The key
fields of the primary table were automatically copied to the view as proposals.

 Choose Table fields. All the tables contained in the view are listed in a dialog box. Select
a table. The fields of the table are now displayed in a dialog box. Select the required
fields in the first column and choose Copy.

6. On the Selection conditions tab page, you can (optionally) formulate restrictions for the
data records to be displayed with the view (see Maintaining Selection Conditions for
Views [Page 125]).

 The selection conditions define the data records that can be selected with the view.

7. Choose .

Result
The view is now activated. At activation, a log is written; it can be displayed with Utilities →
Activation log. If errors or warnings occurring when the view was activated, they are displayed
directly in the activation log.

 SAP AG BC - ABAP Dictionary

Creating Help Views

December 1999 119

Other Options
• Create documentation: You can create information about using the view with Goto →

Documentation. This documentation is output for example when you print the view.

• Change data element of a view field: Select column Mod (modification) for the view
field. The Data element field is now ready for input. Enter the new data element there.
You can enter a data element that refers to the same domain as the data element of the
assigned table field here. Cancel the Mod flag if you want to use the data element of the
assigned table field again.

• Check functions: With Extras → Runtime object → Check you can determine whether
the definition of the view in the ABAP Dictionary maintenance screen is identical to the
definitions in the runtime object of the view. With Extras → Runtime object → Display you
can display the runtime object of the view.

See also:
Help Views [Page 111]

BC - ABAP Dictionary SAP AG

Creating Projection Views

120 December 1999

Creating Projection Views
Procedure

1. Enter an explanatory short text in the field Short text.

 You can for example find the view at a later time using this short text.

2. Enter a table name in the field Base table.

 A projection view always contains exactly one table.

3. Select the fields of the base table that you want to include in the view.

 Choose Table fields. The fields of the table are now displayed in a dialog box. You can
copy fields by selecting them in the first column and choosing Copy.

4. Save your entries.

 You are asked to assign the view a development class. You can change this
development class later with Goto → Object directory entry.

5. Choose .

Result
The help view is activated. At activation, a log is written; it can be displayed with Utilities →
Activation log. If errors or warnings occurring when the view was activated, they are displayed
directly in the activation log.

Other Options
• Create documentation: You can create information about using the view with Goto →

Documentation. This documentation is output for example when you print the view.

• Change data element of a view field: Select column Mod (modification) for the
particular view field. The Data element field is now ready for input. You can enter a data
element that refers to the same domain as the data element of the assigned table field
here. Cancel the Mod flag if you want to use the data element of the assigned table field
again.

• Change maintenance status: The maintenance status [Page 103] determines how you
can access the view data from ABAP programs (read only, read and change). Choose
Extras → Maintenance status. A dialog box appears in which you can select the
maintenance status of the view.

• Check functions: With Utilities → Runtime object → Check you can determine whether
the definition of the view in the ABAP Dictionary maintenance screen is identical to the
specifications in the runtime object of the view. With Utilities → Runtime object → Display
you can display the runtime object of the view.

See also:
Projection Views [Page 110]

 SAP AG BC - ABAP Dictionary

Creating Maintenance Views

December 1999 121

Creating Maintenance Views
Procedure
1. Enter an explanatory short text in the field Short text.

You can for example find the view at a later time using this short text.

2. Enter the primary table of the view under Tables in the Tables/Join conditions tab page.

Only those tables that are linked with the primary table (indirectly) with a foreign key can
be included in the maintenance view.

3. If required, include more tables in the view. In a maintenance view you can only insert tables
that are linked to one another with foreign keys.

Place the cursor on the primary table and choose Relationships. All existing foreign key
relationships of the primary table are displayed. Select the required foreign key and
choose Copy. The secondary table used in such a foreign key is included in the view.
The join conditions derived from the foreign keys (see Foreign Key Relationship and Join
Condition [Page 102]) are displayed.

You can also insert tables that are linked by foreign key with one of the secondary tables
that was already inserted. To do this, place the cursor on the secondary table and
choose Relationships. Then proceed as described above.

For maintenance and help views, there are certain restrictions on the foreign keys with
which the tables can be included in the view (see Restrictions for Maintenance and Help
Views [Page 114]). The foreign keys violating these conditions are displayed at the end
of the list under the header Relationships with unsuitable cardinality.

4. On the View fields tab page, select the fields that you want to copy to the view.

Choose Table fields. All the tables contained in the view are displayed in a dialog box.
Select a table. The fields of the table are now displayed in a dialog box. You can copy
fields by selecting them in the first column and choosing Copy.

All key fields of the primary table must be included in a maintenance view. In addition, all
key fields of secondary tables that are not involved in the foreign key (that is, which are
not linked via a join condition to a key field already included in the view) must be included
in the view.

This ensures that the records inserted with a maintenance view can be written correctly
in the tables contained in the view.

5. On the Selection conditions tab page, you can (optionally) formulate restrictions for the data
records that can be displayed with the view (see Maintaining Selection Conditions for Views
[Page 125]).

The selection conditions define the data records that can be selected with the view.

6. In the Maintenance status tab page, define the maintenance status [Page 103] of the view.

The maintenance status defines how you can access the view data with the standard
maintenance transaction (SM30).

7. Choose .

BC - ABAP Dictionary SAP AG

Creating Maintenance Views

122 December 1999

At activation, a log is written; it can be displayed with Utilities → Activation log. If errors or
warnings occurring when the view was activated, the activation log is automatically
displayed.

8. Go to Transaction SE54 with Environment → Tab.maint.generator.

From the view definition you can generate maintenance modules and maintenance
interfaces that distribute the data entered with the view to the base tables of the view.
You can find more information in Creating a Maintenance Dialog [Ext.].

Other Options
• Create documentation: You can create information about using the view with Goto →

Documentation. This documentation is output for example when you print the view.

• Change the data element of a view field: Select column Mod (modification) for the view
field. The Data element field is now ready for input. You can enter a data element that refers
to the same domain as the data element of the assigned table field here. Cancel the Mod flag
if you want to use the data element of the assigned table field again.

• Define the delivery class of the view: In the Maintenance status tab page, select the
delivery class [Page 124] of the maintenance view.

• Define the maintenance attribute of a view field In the View fields tab page you can define
the maintenance attributes [Page 123] of the view field in column F.

• Check functions: With Extras → Runtime object → Check you can determine whether the
definition of the view in the ABAP Dictionary maintenance screen is identical to the definitions
in the runtime object of the view. With Extras → Runtime object → Display you can display
the runtime object of the view.

See also:
Maintenance Views [Page 112]

BC - Generating the Table Maintenance Dialog [Ext.]

 SAP AG BC - ABAP Dictionary

Maintenance Attribute of a View Field

December 1999 123

Maintenance Attribute of a View Field
You can control how to access a field of a maintenance view with the maintenance attribute.
There are the following maintenance attributes:

• R : Only pure read accesses are allowed for such fields. You cannot maintain such fields
with Transaction SM30.

• S : These fields are used to create subsets when maintaining view data. Only a subset of
the data is displayed. This subset is defined by entering a suitable value in this field.

• H : These fields are hidden from the user in the maintenance dialog. The field does not
appear in the maintenance screen. You have to ensure that such fields have the correct
contents. By default they are left empty.

• : There are no restrictions for the field maintenance.

BC - ABAP Dictionary SAP AG

Delivery Class of a Maintenance View

124 December 1999

Delivery Class of a Maintenance View
The delivery class of a maintenance view is used in the Extended Table Maintenance (SM30). If
a maintenance interface is generated for the maintenance view, the following information is
analyzed when view data is entered for this interface:

• For maintenance views having delivery class E or G, there is a check if the entered data
satisfies the namespace defined in table TRESC for the view.

• There is a check if the transport connection built into the generated table maintenance
makes sense. For example, there is no transport for maintenance views with delivery
classes L and W.

The delivery class of the corresponding base table [Page 78] of the view alone defines how the
data entered in a base table of the view is handled during an upgrade and during transport
between customer systems.

 SAP AG BC - ABAP Dictionary

Maintaining Selection Conditions of Views

December 1999 125

Maintaining Selection Conditions of Views
Once you have defined the base tables and fields of the view, you can restrict the set of data
records that can be selected with the view by defining a selection condition (see Join, Projection
and Selection [Page 97]).

Procedure
1. You can enter a condition having the following form in each line of the Selection

conditions tab page:

 Table, Field name, Operator, Comparison value, AND/OR
2. The entries have the following meaning:

 Table: Name of the base table from which the field was taken.

 Field name: Name of the field for which the selection condition was formulated.

 Operator: Operator for comparing the field contents and comparison value. You can find
the valid operators with the F4 help.

 Comparison value: Constant value with which the field value is compared. Text literals,
which must be enclosed in apostrophes, and numbers are permitted as comparison
values, depending on the data type of the field.

 AND/OR: Link between two lines of the selection condition.

 You can enter the fields for which you want to define selection conditions directly or copy
them with Table fields.

3. If you enter more than one selection condition, you must link them with AND or OR.

 OR operations are only possible between lines referring to the same field. Note that OR
takes priority over AND. The condition <COND1> AND <COND2> OR <COND3> is
therefore interpreted as <COND1> AND (<COND2> OR <COND3>).

4. Save your entries for the selection condition(s).

You can formulate selection conditions for all the fields of the table contained in the
view. It is not important whether or not these fields were included in the view.

BC - ABAP Dictionary SAP AG

Deleting Views

126 December 1999

Deleting Views
Prerequisites
You should only delete a view if it is no longer used in programs.

Procedure
1. In the initial screen of the ABAP Dictionary, select object type View and enter the name of the

view.

With , check if the view is still being used in programs.

2. Choose .

A dialog box appears in which you are asked to confirm the deletion request.

3. Confirm the deletion request.

Result
The view is deleted in the ABAP Dictionary and in the database.

 SAP AG BC - ABAP Dictionary

Example for Views

December 1999 127

Example for Views
Travel agencies often have to check what customer is booked on what flights (see the Flight
Model [Page 295]). The corresponding data is distributed on several tables:

• SCUSTOM: Customer data such as the customer number, name, address.

• SBOOK: Booking data such as the carrier, flight number, passenger (customer number).

• SPFLI: Flight data such as the city of departure and destination.

You can get an overall view of all existing bookings by creating a view on tables SCUSTOM,
SBOOK and SPFLI.

You can determine all the bookings in table SBOOK for a customer number (ID) for the customer
number in table SCUSTOM. Using the carrier ID (CARRID) and the flight number (CONNID), the
flight information can be read from table SPFLI for a booking that is found.

This results in the following join conditions for the view:

SBOOK-MANDT = SCUSTOM-MANDT

SBOOK-CUSTOMID = SCUSTOM-ID

SPFLI-MANDT = SBOOK-MANDT

SPFLI-CARRID = SBOOK-CARRID

SPFLI-CONNID = SBOOK-CONNID

MANDT CARRID CONNID FLDATE BOOKID CUSTOMID ... SBOOK

MANDT CARRID CONNID CITYFROM CITYTO SPFLI...... ...

001

001

SCUSTOMMANDT ID CITYNAME ...

122356 Smith New York001 ...

122356

122356

...

...

001

001

New York

TokyoBerlin

BerlinAA

AA

LH

LH

48

324

324

48

...

...

...

...

3689

3690

...

...

...

...

The join conditions can also be derived from the existing foreign key relationships between the
tables of the view (see Foreign Key Relationship and Join Condition [Page 102]).

BC - ABAP Dictionary SAP AG

Example for Views

128 December 1999

If you only want to display the customer bookings that were not canceled with the view, you can
do this with the selection condition SBOOK-CANCELLED <> ‘X’.

Structure of View SCUS_BOOK
for Customer Flight Bookings

MANDT ID NAME CITY CARRID CONNID FLDATE BOOKID CITYFROM CITYTO

001

001

122356 Smith New York AA 48 3689 New York Berlin

122356 Smith New York LH 324 3690 Berlin Tokyo

SCUSTOM SBOOK SPFLI

Data Selection with View SCUS_BOOK
A view can be used to select data in an ABAP program.

The following example program determines the existing flight bookings for a customer. The data
is selected with view SCUS_BOOK.

 SAP AG BC - ABAP Dictionary

Example for Views

December 1999 129

REPORT CUSBOOK1.

PARAMETERS: CUSTOMID LIKE SBOOK-CUSTOMID.
TABLES: SCUS_BOOK.

WRITE: / ‘Existing Bookings for Customer’,
CUSTOMID,‘:’.

SELECT * FROM SCUS_BOOK WHERE CUSTOMID = CUSTOMID.
WRITE: / ‘CUSTOMER’, SCUS_BOOK-NAME, ‘booked on’,
SCUS_BOOK-CARRID,SCUS_BOOK-CONNID, ‘from’,
SCUS_BOOK-CITYFROM, ‘to’,SCUS_BOOK-CITYTO,
‘on’,SCUS_BOOK-FLDATE.

ENDSELECT.

IF SY-SUBRC <> 0.
WRITE: / ‘No bookings exist’.

ENDIF.

BC - ABAP Dictionary SAP AG

Types

130 December 1999

Types
User-defined data types can be stored for all programs in the ABAP Dictionary. These user-
defined types provide the same functionality as the local types that can be defined in ABAP
programs with TYPES (see Data Types and Data Objects [Ext.]).

The types defined globally in the ABAP Dictionary can be accessed in ABAP programs with
TYPE. You can also refer to the types defined in the ABAP Dictionary when defining the type of a
function module interface.

ADDRESS
TOWN

ZIP TOWNNAME

NAME
FIRSTNAME LASTNAME

STRNAME HOUSENO

STREET

Structured type PERSON in the ABAP Dictionary

ABAP report

...

...

Takes type definition from
the ABAP Dictionary

TYPES: BEGIN OF PERSONS,
 PERSON TYPE PERSON,
 TELNO(15) TYPE C,
 END OF PERSONS.

The central definition of types that are used more than once in the ABAP Dictionary permits them
to be changed centrally. The active ABAP Dictionary ensures that such changes are made at all
the relevant locations. ABAP programs, for example, are adjusted to the modified type definitions
when they are recreated. If a type is changed, all the objects (e.g. types or tables) that use this
type are determined at activation. The objects that are found are automatically adjusted to the
change.

All types have a runtime object [Page 232]. This runtime object is generated the first time the
type is activated and is adjusted to the current type definition at each further activation.

You can enter semantic information for a type in the type definition in the ABAP Dictionary. This
includes for example text that is displayed for the F1 help, text for use in screens, search helps,
and technical documentation.

There are three different type categories:

• Data elements [Page 132] (elementary types and reference types).

• Structures [Page 138] (structured types): A structure consists of components that also have a
type, that is they refer to a type.

 SAP AG BC - ABAP Dictionary

Types

December 1999 131

• Table types [Page 143]: A table type describes the structure and functional attributes of an
internal table. A special case is the ranges table types [Page 151].

All the types lie in a common namespace. For example no structure or table type having the
same name can be created for a data element.

The types defined locally in a program override the global types from the ABAP Dictionary having
the same name.

BC - ABAP Dictionary SAP AG

Data Elements

132 December 1999

Data Elements
A data element describes either an elementary type or a reference type.

An elementary type is defined by the built-in data type, length and possibly the number of
decimal places. These type attributes can either be defined directly in the data element or copied
from a domain [Page 155].

A reference type defines the type of the reference variables containing pointers to objects or
interfaces. A reference type is defined by specifying an existing class or existing interface. You
can also define a generic reference to objects or data objects.

You can use a data element to define the type of a table field, structure component or the row
type of a table type. A data element can also be referenced in ABAP programs with TYPE. As a
result, variables that take on the attributes of a data element can be defined in an ABAP
program.

Information about the meaning of a table field or structure component and information about
editing the corresponding screen field can be assigned to a data element. This information is
automatically available to all screen fields that refer to the data element.

This information includes the display of the field in input templates using key word text, column
headers for list output of the table contents (see Field Labels [Page 137]), and output editing
using parameter IDs.

This is also true for online field documentation. The text appearing in the field help (F1 help) in a
field of an input template (see Documentation and Docu Status [Page 136]) comes from the
corresponding data element.

The field CONNID (flight class) of table SBOOK refers to the data element
S_CONN_ID. This data element gets its technical attributes (data type NUMC, field
length 4) from domain S_CONN_ID. Data element S_CONN_ID describes the
technical attributes and meaning (with an assigned long text and an explanatory
short text) of field CONNID (and all other fields that refer to this data element).

A variable having the type of data element S_CONN_ID can be defined in an ABAP
program with the statement DATA CONNID TYPE S_CONN_ID.

 SAP AG BC - ABAP Dictionary

Data Elements

December 1999 133

Domain
S_CONN_ID

Data element
S_CONN_ID

Table SBOOK Table SFLIGHT Table SPFLI
CONNID CONNID CONNID

Copy data type, length and
possibly number of decimal
places from domain

Copy meaning of field
from data element

See also:
Creating Data Elements [Page 134]

BC - ABAP Dictionary SAP AG

Creating Data Elements

134 December 1999

Creating Data Elements
Procedure

1. In the initial screen of the ABAP Dictionary, select object type Data type, enter the data
element name and choose Create.

 A dialog box appears.

2. Select the data element and choose .

 The maintenance screen for data elements appears.

3. Enter an explanatory short text in the field Short text.

 The short text appears as title in the F1 help for all the screen fields referring to this data
element.

4. On the Definition tab page, define the data type [Page 235] , number of places and
possibly the number of decimal places of the data element. You can define these
attributes by specifying a domain or by direct type entry.

 If the data element should have the type attributes of a domain, you only have to select
Domain and enter the domain name in the corresponding field. You can also define a
new domain and create it by navigating to the domain maintenance screen by double-
clicking (see Creating Domains [Page 162]).

 If you want to enter the type attributes directly, select Direct type entry. Entries are now
possible in the fields Data type, Number of places and Decimal places.

 If the data element should be a reference to a class or an interface, select Reference
type. Enter the name of the class or interface in the Reference field. You can also enter
OBJECT or DATA if the data element should implement a generic reference to objects or
data objects.

5. On the Field label [Page 137] tab page you can (optionally) maintain text information
(short, medium, and long field labels and the title) for the data element.

 You can use this text information in input templates to represent fields that refer to this
data element.

6. Save the data element.

 You are asked to assign the data element a development class.

7. Choose .

Result
The data element is activated. You can find information about the activation flow in the activation
log, which you can display with Utilities →→→→ Activation log. If errors occurred when activating the
data element, the activation log is automatically displayed.

Other Options
• Create documentation: With Documentation, create a text that describes the contents

of the data element. This text is displayed for the F1 help in all screen fields that refer to
this data element. You should therefore only leave out this step if the data element does

 SAP AG BC - ABAP Dictionary

Creating Data Elements

December 1999 135

not appear on a screen. In this case you should set the documentation status [Page 136]
appropriately.

• Assign a search help: You can assign the data element a search help [Page 166]. This
search help is offered on all the screen fields referring to this data element when the
input help (F4 help) is called (see Attaching Search Helps to Data Elements [Page 177]).
To assign the search help, you must specify its Name in the data element maintenance
screen and an export parameter of the search help in the Parameter field.

• Assign a parameter ID: A field can be filled with default values from SAP memory using
a parameter ID. A screen field is only filled automatically with the value stored under the
parameter ID of the data element if this was explicitly permitted in the Screen Painter.

 For example, if a user only has authorization for company code 001, this company
code can be stored in memory under the corresponding parameter ID at the
beginning of a transaction. Fields referring to the data element for the company code
are then automatically filled with the value 001 in all subsequent screen templates. In
this case, the corresponding parameter ID must be only entered in the data element
for the company code.

• Assign a default component name: You can store a proposal for the name of the table
fields or structure components that refer to a data element. If possible, use an English-
language default name. Always use this default name for components in BAPI structures
(structures with a fixed interface). This results in a more unified assignment of field and
component names.

• Mark data element as relevant for change documents: The data of a business-
oriented object is often distributed on several tables. To be able to trace changes to this
business object, these tables can be combined in a Change document object. Function
modules that can be integrated in the corresponding application programs and that log
the changes are generated from such a change document object. Changed field contents
are only logged if the Change document flag is set for the data element of the field.

BC - ABAP Dictionary SAP AG

Documentation and Docu Status

136 December 1999

Documentation and Docu Status
Documentation entered for a data element is displayed when you select F1 Help on each screen
field that refers to the data element. If there is no documentation for the data element, only the
short text of the data element appears for the F1 help. Data elements that are used in input
templates should normally be documented.

CONNID

CLASS

Maintain a flight booking

Table SBOOK

CONNID

Data element S_CONN_ID
Documentation on
the data element

...

...

Code of flight connection
Short text

Definition
Four-place code that
defines a flight
connection between two
cities.

Call the F1 help

Display the
documentation on
the data element

The documentation status specifies whether documentation has already been written for a data
element and whether documentation is in fact required. To display the docu status of a data
element in the maintenance screen of the data element, choose Goto →→→→ Documentation →
Status.

The following status entries are possible:

• Object should be documented: The standard setting. Documentation either already exists
or should be written.

• Object is not used in any screens: The object is not used in any screen. Documentation
does not exist and is not required.

• Object is explained sufficiently by the short text: The short text explains the object
adequately. Documentation does not exist and is not required.

• Documentation postponed: This selection might be appropriate, for example, if the use of
the data element has not yet been fully clarified. Documentation does not (yet) exist.

 SAP AG BC - ABAP Dictionary

Field Labels

December 1999 137

Field Labels
You can assign text information to a data element with the field labels.

The field labels are used to display a screen field. You can copy structure components and table
fields from the ABAP Dictionary to the input template when you define a screen in the Screen
Painter (Get from Dict. function). You can also assign a field a field label that is derived from the
data element of the field.

The text of the field label can be translated centrally with the translation tools. The text is then
displayed in the input template in the user’s logon language.

Short, Medium and Long Field Labels
Keywords of different lengths for identifying screen fields. Since the space available for such
texts depends on the input template, you can define the text information in three different lengths.

Headers
This text is used as a column header when you output the contents of fields as a list in the Data
Browser. It can also be assigned to a field in the Screen Painter.

BC - ABAP Dictionary SAP AG

Structures

138 December 1999

Structures
A structure (structured type) comprises components (fields). Types are defined for the
components A component can refer to an elementary type (via a data element or by directly
specifying the data type and length in the structure definition), another structure or a table type. A
structure can therefore be nested to any depth.

Structures are used to define the data at the interface of module pools and screens and to define
the parameter types of function modules.

The data for managing the addresses of persons can be represented as a nested
structure PERSON. The structure comprises the components (structures) NAME and
ADDRESS. The structure NAME comprises the components (data elements)
FIRSTNAME and LASTNAME. The structure ADDRESS comprises the components
(structures) STREET and TOWN. The structure STREET comprises the components
(data elements) STREETNAME and HOUSENO. The structure TOWN comprises the
components (data elements) ZIP and TOWNNAME.

PERSON

NAME

ADDRESS

FIRSTNAME
LASTNAME

NAME

STREET

TOWN

ADDRESS

TOWN

TOWNNAME

ZIPCODE

STREET
STREETNAME
HOUSENUMBER

The central definition of structures that are used more than once makes it possible for them to be
changed centrally. The active ABAP Dictionary then makes this change wherever required.
ABAP programs or screen templates that use a structure are automatically adjusted when the
structure is changed (see Runtime Objects [Page 232]). This ensures the greatest possible
consistency of the data definition, also for complex programs.

There are Flat, nested and deep structures. A flag structure only references elementary types. A
nested structure references at least one further structure, but not a table type. A deep structure
references at least one table type.

 SAP AG BC - ABAP Dictionary

Structures

December 1999 139

Flat structure

Deep structure

Nested structure

Field A Field B

Field A Field B

Field A Field B

Field C Field D

Type reference to
other structure

Type reference to
table type

Field C Field D

In a database table, you can only include flat structures as substructures [Page 83].

See also:
Creating Structures [Page 140]

BC - ABAP Dictionary SAP AG

Creating Structures

140 December 1999

Creating Structures
Procedure

1. In the initial screen of the ABAP Dictionary, enter the structure name in field Data type
and choose Create.

 A dialog box appears in which you must select the type category.

2. Select Structure and choose .

 The maintenance screen for structures appears.

3. Enter an explanatory short text in field Short text.

 You can for example find the structure at a later time using this short text.

 Carry out the following steps for all the components you want to include in the structure.

 You can also include structures, tables or views instead of individual components. The
procedure here is described in Inserting an Include [Page 83].

4. Enter a name in column Components.

 If you want to use the structure as an include [Page 16] in a transparent table at a later
time, the component names may not be longer than 16 characters.

5. Enter the name of the type whose attributes should be used in the component in field
Component name. You can enter any type (data element, structure or table type) here.

 You can also add components by directly specifying the data type and length. Choose
Built-in type. You can now enter values for fields DTyp, Length, Dec.places and Short
description. With Component type you can switch back to the screen for entering
references to existing types.

 You can combine components with direct type definition and components that are
defined by referencing an existing type as you like.

6. The reference field and reference table [Page 15] must be specified for components of
type CURR (currency) and QUAN (quantity).

 You can make these entries on the Currency/quantity fields tab page.

7. Now maintain the foreign keys of the structure.

 Proceed as when maintaining the foreign keys of a table (see Creating Foreign Keys
[Page 74]).

8. Save your entries once you have defined all the components of the structure.

 You are asked to assign the structure a development class. You can change the
development class later with Goto → Change object directory entry.

9. Choose .

Result
The structure is now activated. The runtime object of the structure is created. At activation, a log
is written; it can be displayed with Utilities → Activation log. If errors occurred when the structure
was activated, the activation log is automatically displayed.

 SAP AG BC - ABAP Dictionary

Creating Structures

December 1999 141

Other Options
• Create documentation: You can enter information about using the structure with Goto

→ Documentation. This documentation is also output when the structure is printed.

• Assign a search help: You can assign the structure a search help. This search help is
offered on all the screen fields referring to this structure field when the input help (F4
help) is called (see Attaching Search Helps to Table Fields [Page 181]). Proceed as
follows:

1. Choose Goto → Search help.

2. In the next dialog box, enter the search help name and choose

3. The system automatically makes a proposal for the assignment of the search help
parameters to structure fields. An attempt is made to assign a structure field with the same
domain to a search help parameter. If there is no such field, the assignment is open. The
assignment is displayed in a dialog box.

4. You can change the system proposal (except for the search field, that is the field to which the
search help was assigned) by assigning a structure field with the same data type and same
field length to a search help parameter.

5. Choose Copy.

• Define the activation type: The activation type [Page 80] defines whether the structure
can be activated directly from the ABAP Dictionary, or whether the runtime object of the
structure must first be generated with a C program. It is only important to define an
activation type for structures of the runtime environment. You can define the activation
type with Extras →→→→ Activation type.

BC - ABAP Dictionary SAP AG

Named Includes

142 December 1999

Named Includes
If an include [Page 16] is used to define a database table or structure, a name can be assigned
to the included substructure. The group of fields in the include can be addressed as a whole in
ABAP programs with this name.

In ABAP programs, you can either access the fields directly with <Table/structure name>-<Field
name> or analogously with <Table/structure name>-<Group name>-<Field name>. You can
access the fields of the group as a whole with <Table/structure name>-<Group name>.

Structure PERSON includes structure ADDRESS with the name ADR. ADDRESS
has a field CITY. With PERSON-ADR you can address all the fields in structure
ADDRESS. The included field CITY can also be addressed with PERSON-CITY or
PERSON-ADR-CITY.

You can include a structure more than once (e.g. in a period group). Since direct access by field
name should be permitted here, the included field names must be renamed to ensure that they
are unique.

A suffix can be assigned to each group, extending the names of the group fields. The fields can
then be addressed in ABAP programs with <Table/structure name>-<Field name (with suffix)> or
<Table/structure name>-<Group name>-<Field name (with suffix)>.

Structure PERSON includes structure ADDRESS twice. An address is the private
address with suffix H and name ADRH. The other address is the business address
with suffix W and name ADRW. You can access field CITY in the private address
with PERSON-CITYH or PERSON-ADRH-CITY.

The functionality of the named includes in the ABAP Dictionary corresponds to the ABAP
construction INCLUDE TYPE ... AS ... RENAMING

 SAP AG BC - ABAP Dictionary

Table Types

December 1999 143

Table Types
A table type describes the structure and functional attributes of an internal table in ABAP. In
ABAP programs you can reference a table type TTYP defined in the ABAP Dictionary with the
command DATA <inttab> TYPE TTYP. An internal table <inttab> is created in the program with
the attributes defined for TTYP in the ABAP Dictionary.

A table type is defined by:

• its line type, that defines the structure and data type attributes of a line of the internal
table

• the options for managing and accessing the data (access mode [Page 148]) in the
internal table

• the key (key definition [Page 149] and key category [Page 147]) of the internal table

The row type is defined by directly entering the data type, length and number of decimal places
or by referencing a data element [Page 132], structured type (structure [Page 138], table [Page
13] or view [Page 95]) or other table type.

Table type TABTYPE

Row type STRA
Field 1 Field 2 Field 3 Field 4

Field 1 Field 2 Field 3 Field 4
Structure STRA

Row type is defined by
reference to structure STRA

Access mode and key define how
the data is managed in TABTYPE
and how the data is accessed

Table type TABTYPE shown in the graphic can be used with the statement DATA
<name> TYPE TABTYPE in ABAP programs to define an internal table <name>.

A local type <name> that takes on the attributes of type TABTYPE can be defined in
the program with TYPES <name> TYPE TABTYPE.

A special case of table types are the ranges table types [Page 151].

BC - ABAP Dictionary SAP AG

Table Types

144 December 1999

See also:
Creating Table Types [Page 145]

 SAP AG BC - ABAP Dictionary

Creating Table Types

December 1999 145

Creating Table Types
Procedure

1. In the initial screen of the ABAP Dictionary, enter the table type name in field Data type
and choose Create.

 A dialog box appears in which you must define the type category.

2. Select Table type and choose Choose.

 The maintenance screen for table types appears.

3. Enter an explanatory short text in the field Short text.

 You can for example find the table type at a later time using this short text.

 Now define the structure of a row of the table type (row type), the options for accessing
data in the defined internal table (access mode) and the key of the table type.

4. Enter the row type of the table type on the Row type and Access tab page. You can refer
to an existing type (data element, structure, table, view, table type) or directly enter the
row type.

 If you want to refer to an existing type, you must set the Row type flag and enter the
name of the type in the field below it.

 If you want to enter the data type, field length and possibly the number of decimal places
directly, you must set the Built-in type flag. Entries are now possible in the fields Data
type, Number of places and Decimal places.

5. Define the access mode [Page 148] of the table type.

 This defines how to access the data in an internal table defined by the table type in
ABAP programs.

6. Define the key of the table type on the Key tab page.

 The key of a table type is defined by the key definition [Page 147] and the key category
[Page 149].

 If you select Key components, you can define the key of the table type directly in the
input area with the same name. This option is only possible if the row type of the table
type is a structure, table or view.

 You can display all the components of the row type with Select components. Select the
components you want to copy to the key and choose .

7. Save the table type.

 You are asked to assign the table type a development class. You can change this
development class later with Goto → Object directory entry.

8. Choose .

Result
The table type is now activated. The runtime object [Page 232] of the type is created. At
activation, a log is written; it can be displayed with Utilities → Activation log. If errors occurred
during activation, the activation log is automatically displayed.

BC - ABAP Dictionary SAP AG

Creating Table Types

146 December 1999

Other Options
• You can enter an explanatory text for the table type with Goto → Documentation. This is

purely technical documentation that is not displayed in the online help system.

• You can display the runtime object of the table type with Utilities → Runtime object →
Display. With Utilities → Runtime object → Check you can check if the runtime object
of the table type is consistent with its definition in the maintenance screen of the ABAP
Dictionary.

 SAP AG BC - ABAP Dictionary

Key Definition of a Table Type

December 1999 147

Key Definition of a Table Type
When a table type is defined, the key to be used for the table type must be specified.

You have the following options:

• Standard key: The structure of the key depends on the row type category. In a structured
row type, the standard key consists of all the character-like components of the table row.
In an elementary row type or reference type as row type, the standard key consists of the
entire table row. If the row type is a table type, the standard key is empty. Note that an
empty key is only allowed for access mode Standard table.

• Row type: The key consists of all the fields of the row type.

• Key components: The key is explicitly defined by selecting components (fields) of the row
type. This is only possible if a structure, table or view was selected as row type.

• Key not specified: The key is not specified. This defines a generic table type [Page 150].

BC - ABAP Dictionary SAP AG

Access Mode

148 December 1999

Access Mode
The access mode defines how to access the data in the internal table defined by the table type
when performing key operations (READ TABLE, INSERT TABLE, MODIFY TABLE, COLLECT).
In particular, it defines whether key accesses (see Keys of Table Types [Page 147]) to the
internal table are allowed.

Possible access modes are:

• Standard table:
The key access to a standard table uses a sequential search. The time required for an
access is linearly dependent on the number of entries in the internal table.

You should usually access a standard table with index operations.

• Sorted table:
The table is always stored internally sorted by its key. Key access to a sorted table can
therefore use a binary search. If the key is not unique, the entry with the lowest index is
accessed. The time required for an access is logarithmically dependent on the number of
entries in the internal table.

Index accesses to sorted tables are also allowed. You should usually access a sorted
table using its key.

• Hash table:
The table is internally managed with a hash procedure. All the entries must have a
unique key. The time required for a key access is constant, that is it does not depend on
the number of entries in the internal table.

You cannot access a hash table with an index. Accesses must use generic key
operations (SORT, LOOP, etc.).

• Index table:
The table can be a standard table or a sorted table.

Index access is allowed to such an index table. Index tables can be used to define the
type of generic parameters of a FORM (subroutine) or a function module.

• not specified:
The table can be a standard table, a sorted table or a hash table. The set of valid
operations on such a table is the intersection of the valid operations for these three
access modes.

You cannot access tables of this type with index operations.

If Index table or Not specified is selected for the access mode, a generic table type
[Page 150] that cannot be used to define data objects or types in programs is
created.

 SAP AG BC - ABAP Dictionary

Key Category

December 1999 149

Key Category
The key category defines whether the internal table defined by the table type may only contain
keys with a unique key or whether the key may have duplicates.

The following key categories may be defined:

• unique: This table type may only contain records with a unique key.

• non-unique: A table with this table type may also contain records that do not have different
keys for the table type.

• not specified: The key category is unique or non-unique. This defines a generic table type
[Page 150].

Only certain combinations of access mode [Page 148] and key category are allowed. These are
listed in the following table.

Access Mode Key category

Not specified Not specified

Index table Not specified

Standard table Non-unique

Sorted table Unique, non-unique or not specified

Hash table Unique

There is one exception: If the key of a standard table or hash table is not specified, you have to
select key category not specified.

BC - ABAP Dictionary SAP AG

Generic Table Types

150 December 1999

Generic Table Types
A generic table type does not define all the attributes of an internal table in the ABAP Dictionary;
it leaves some of these attributes undefined.

A table type is generic in the following cases:

• Index table or not specified is selected for the access type,

• Not specified is selected for the key definition,

• Not specified is selected for the key category.

Generic table types are used to define the types of generic table parameters in function modules
and forms.

If a generic table type with the index table access type is used as the parameter of a
function module, you can pass either a sorted table or a standard table in the call.

Generic table types offer a degree of freedom in the arguments passed in the corresponding
calls.

Since generic table types do not define all the necessary attributes of an internal table, they
cannot be used to define data objects (with DATA) or types (with TYPE).

 SAP AG BC - ABAP Dictionary

Ranges Table Types

December 1999 151

Ranges Table Types
A ranges table type is a special case of a table type. A ranges table type describes the structure
of an internal table for administering complex areas, i.e. the type of an internal ranges table in the
ABAP program.

Ranges tables can be used for example in logical conditions (IN operators) in the SELECT, IF,
WHILE and CHECK statements or to pass data to selection tables.

The row type of a ranges table type has a fixed structure. The row type consists of the 4
components SIGN (sign), OPTION (comparison operator), LOW (lower limit) and HIGH (upper
limit) in this order.

The type of components LOW and HIGH is defined by an elementary associated type. It can be
defined by specifying a data element or by directly defining the data type, number of places and if
necessary the number of decimal places.

A ranges table type always has Standard table access mode and a standard key that is non-
unique.

See also:
Creating Ranges Table Types [Page 152]

BC - ABAP Dictionary SAP AG

Creating a Ranges Table Type

152 December 1999

Creating a Ranges Table Type
1. In the initial screen of the ABAP Dictionary, enter the name of the ranges table type

[Page 151] in field Data type and choose Create.

 A dialog box appears in which you must select the type category.

2. Select Table type and choose .

 The maintenance screen for table types appears.

3. Enter an explanatory short text in the field Short text.

 You can for example find the ranges table type at a later time using this short text.

4. Choose Edit → Define as ranges table type.

 You go to the maintenance screen for ranges table types. The access mode [Page 148],
key definition [Page 147] and key category [Page 149] are defined in advance for a
ranges table type, so you do not need to define them.

 To define the ranges table type, you only have to specify an elementary type for the
types of the LOW and HIGH components of the corresponding row type.

 If you want to define the types of the LOW and HIGH components using an existing data
element, you must select Data element and enter the name of the data element in the
subsequent field. You can also enter the name of a data element that does not yet exist
and go directly to the data element maintenance screen by double-clicking to create it.

 You can also define the elementary type of the LOW and HIGH components directly.
Select Built-in type. You can now enter values for fields Data type, Number of places and
Decimal places.

5. Now enter a name for the row type of the ranges table type in field Structured row type.

 A ranges table type must have a row type, just like any other table type. This row type
always has a fixed structure for the special case of ranges table types. You can therefore
generate the row type from the maintenance screen of the ranges table type.

6. Save your entries.

 You are asked to assign the ranges table type a development class. If needed, you can
change this development class later with Goto → Object directory entry.

7. Choose Create. You can generate the row type of the ranges table type with this
function.

 The maintenance screen for structures is displayed. The components of the row type are
already assigned based on your definition of the associated type for the LOW and HIGH
components. You only have to enter a short text for the row type and Activate it. Then
choose Back.

8. Choose .

Result
The ranges table type is now activated. The runtime object [Page 232] of the type is created. At
activation, a log is written; it can be displayed with Utilities → Activation log. If errors occurred
during activation, the activation log is displayed immediately.

 SAP AG BC - ABAP Dictionary

Creating a Ranges Table Type

December 1999 153

BC - ABAP Dictionary SAP AG

Deleting Types

154 December 1999

Deleting Types
Prerequisites
Note that you can only delete a type (data element, structure, table type) in the ABAP Dictionary
when it is no longer used in other objects (for example in tables, structures or programs).

Procedure
1. In the initial screen of the ABAP Dictionary, select the name of the type (data element,

structure, table type) in field Data type.

With you can get an overview of where the type is still in use. Make sure that the type
is no longer being used in other objects.

2. Choose .

A dialog box appears in which you are asked to confirm the deletion request.

3. Confirm the deletion request.

Result
The type is deleted if it is no longer being used in other objects.

 SAP AG BC - ABAP Dictionary

Domains

December 1999 155

Domains
A domain defines a value range. A domain is assigned to a data element. All table fields or
structure components that use this data element then have the value range defined by the
domain. The relationship between the field or component and the domain is thus defined by the
data element of the field or component.

Fields or components that refer to the same domain (with the assigned data elements) are also
changed when the domain is changed. This ensures that the value ranges of these fields or
components are consistent. Fields or components that are technically the same can thus be
combined with a reference to the same domain.

Domain

Data element 1 Data element 2

Table 1 Table 2 Table 3

Data type and length of fields
are always consistent

The value range of a domain is defined by specifying a data type and length (and number of
decimal places for numeric data types).

A personnel number is defined by the data format NUMC and by specifying the
number of places for this personnel number.

The value range of a domain can be restricted by defining fixed values [Page 157]. If all the fields
or components that refer to the domain should be checked against a certain table, this table can
be defined as the value table [Page 158] of the domain.

Output attributes can also be defined for all the fields or components that refer to the domain
(see Creating Domains [Page 162]). A conversion routine [Page 159] can be assigned to a
domain. This conversion routine converts values from display format to internal format for the
fields or components that refer to this domain.

BC - ABAP Dictionary SAP AG

Domains

156 December 1999

See also:
Creating Domains [Page 162]

Changing Domains [Page 164]

Deleting Domains [Page 165]

 SAP AG BC - ABAP Dictionary

Fixed Values

December 1999 157

Fixed Values
The value range of a domain can be further restricted by defining fixed values. If fixed values are
defined for a domain, these are used in the input check in screen templates. If no other means of
help is defined for a field (search help [Page 166], foreign key [Page 19]), the fixed values are
also offered in the input (F4) help.

Domain S_CLASS (data type CHAR, length 1) in the flight model [Page 295]
describes the possible classes of a flight booking. The value range of domain
S_CLASS is defined by the fixed values C (business class), F (first class) and Y
(economy class). Only the values C, F and Y may be entered in screen templates for
all the fields that refer to this domain.

You can define fixed value intervals either by entering upper and lower limits or by specifying
single values. Value ranges and single values can be combined as required. You can enter an
explanatory text for every single value or interval; it is displayed in the input help.

It is only possible to define fixed values for domains of data types CHAR, NUMC, DEC, INT1,
INT2 and INT4. There is only an input check of the template for data types CHAR and NUMC.

BC - ABAP Dictionary SAP AG

Value Table

158 December 1999

Value Table
In some cases you can see when you define a domain that all the table fields or structure
components referring to this domain should be checked against a certain table. This information
can be stored in the domain by entering a value table.

The system proposes the value table as check table when you try to define a foreign key [Page
19] for the field or component. This proposal can be overridden.

Domain S_CARR_ID (data type CHAR, length 3) in the flight model [Page 295]
describes the three-place code of the airlines. All the airlines are listed together with
their codes in table SCARR. It is generally advisable to check fields referring to
domain S_CARR_ID against table SCARR. SCARR is therefore entered as value
table for domain S_CARR_ID. If you want to define a foreign key for a field referring
to S_CARR_ID, SCARR is proposed as the check table.

A check is not implemented by simply entering a value table! The check against the value table
only takes effect when a foreign key has been defined.

 SAP AG BC - ABAP Dictionary

Input and Output Conversions

December 1999 159

Input and Output Conversions
Depending on the data type of the field, there is a conversion when the contents of a screen field
are converted from display format to SAP-internal format and vice versa. If this standard
conversion is not suitable, it can be overridden by defining a conversion routine in the underlying
domain.

Conversion routines are identified by a five-place name and are stored as a group of two function
modules. The function modules have a fixed naming convention. The following function modules
are assigned to conversion routine xxxxx:

• CONVERSION_EXIT_xxxxx_INPUT

• CONVERSION_EXIT_xxxxx_OUTPUT

The INPUT module converts from display format to internal format, and the OUTPUT module
converts from internal format to display format.

When is a Conversion Routine Executed?
If a screen field refers to a domain with a conversion routine, this conversion routine is executed
automatically when entries are saved in this screen field or when values are displayed in this
screen field. The conversion routine of the domain is also triggered when the field contents are
output with the WRITE statement.

Table SPFLI in the flight model [Page 295] contains information about the flights
offered by the carriers. The time for each flight is recorded in field FLTIME. Enter and
display the time of the flight in input templates in the form HHH:MM (hours:minutes).
Store the flight time entered in the database as an integer number (number of
minutes of the flight). An entry 3:27 is therefore stored in the database as 207 (3
hours, 27 minutes = 207 minutes).

Field FLTIME refers to domain S_DURA, to which conversion routine SDURA is
assigned. The value is thus converted by the two function modules
CONVERSION_EXIT_SDURA_INPUT and
CONVERSION_EXIT_SDURA_OUTPUT.

BC - ABAP Dictionary SAP AG

Input and Output Conversions

160 December 1999

Flight

Length

Flight

Length

Enter values in screen
template

Display values in
screen template

CONVERSION_EXIT_SDURA_INPUT
Converts input to internal format

CONVERSION_EXIT_SDURA_OUTPUT
Converts internal format to display format

3:27

3:27

207

Length
SPFLI

A conversion routine can also be triggered by specifying its five-place name in the attributes of a
field in the Screen Painter or with the addition USING EDIT MASK <Name of conversion routine>
in the WRITE command in the program. With the USING NO EDIT MASK addition in the WRITE
statement, you can skip a conversion routine defined for a domain when outputting.

Parameters
The two function modules of a conversion routine must have precisely two parameters with the
names INPUT and OUTPUT for the value to be converted and the converted value.

The INPUT parameter in the INPUT conversion and the OUTPUT parameter in the OUTPUT
conversion should not have any reference fields because the value passed in the call could have
a different length than that expected.

Programming Conversion Routines
ABAP statements that result in an interruption of processing (such as CALL SCREEN, CALL
DIALOG, CALL TRANSACTION, SUBMIT, COMMIT WORK, ROLLBACK WORK, MESSAGE I,
MESSAGE W) are not allowed in conversion routines.

Only A messages are meaningful in output conversion, but A, E and S messages can be
triggered in input conversion (although S messages are not very meaningful here). E messages
result in an error dialog. Exceptions are not intercepted in the call.

The output conversion is also triggered with WRITE and WRITE TO. The conversion routine may
therefore occur very frequently with lists. The output conversion should therefore be programmed
as efficiently as possible.

No external performs should be used in conversion routines. Programs that are called externally
use the table work areas of the first calling main program. In conversion routines this can result in

 SAP AG BC - ABAP Dictionary

Input and Output Conversions

December 1999 161

errors that cannot be easily analyzed since they are sometimes called at unpredictable times in
the program flow.

BC - ABAP Dictionary SAP AG

Creating Domains

162 December 1999

Creating Domains
Before creating a new domain, check whether a domain that defines the same value range
already exists. In this case you should use the existing domain if possible.

Procedure
1. Select object type Domains in the initial screen of the ABAP Dictionary, enter the name of the

domain and choose Create.

The maintenance screen for domains appears.

2. Enter an explanatory short text in the field Short text.

You can for example find the domain at a later time using this short text.

3. On the Data type tab page, choose the data type [Page 235], number of places (valid
positions without editing characters such as comma or period) and number of decimal places
(only needed for data types DEC, FLTP, QUAN and CURR).

Note that some data types have a fixed length. For example, the data type CLNT (client)
always has 3 places. If you enter an invalid number of places for such a data type, the
system corrects this automatically after issuing a warning.

4. If only certain input values are valid for the domain, you can enter them in the Value range
tab page as fixed values [Page 157].

You can also define a value table [Page 158] as proposed value for foreign key checks
on this tab page.

5. Save the domain.

You are asked to assign the domain a development class.

6. Choose .

Result
The domain is activated. You can find information about the activation flow in the activation log,
which you can call with Utilities →→→→ Activation log. If errors occurred when the domain was
activated, the activation log is automatically displayed.

Other Options
• Create documentation: You can create technical documentation about the domain with

Goto → Documentation.

• Restrict output length: The value for the output length (maximum field length including
editing characters such as comma and period) is automatically computed from the definitions
for the data type, number of places and number of decimal places. If fields that refer to this
domain should be output on the screen or in lists with only a certain length, you can reduce
this size.

• Distinguish uppercase/lowercase: If you want to distinguish uppercase and lowercase for
the fields referring to this domain, you have to select Lowercase. Otherwise, all the entered
letters are converted to uppercase in the database. Entries can only made for this field in
data types CHAR and LCHR.

 SAP AG BC - ABAP Dictionary

Creating Domains

December 1999 163

• Assign conversion routine: If field values have to be converted during input or output, you
can define a conversion routine [Page 159].

• Output with sign: If fields that refer to this domain can contain negative values, the Sign flag
must be set. When the field contents are output to the screen, the first output location is
reserved for a sign. If the flag is not set but the field contains negative values, problems could
occur when outputting to the screen. Entries can only made in this field for data types DEC,
FLTP, QUAN and CURR.

BC - ABAP Dictionary SAP AG

Changing Domains

164 December 1999

Changing Domains
Procedure
In the initial screen of the ABAP Dictionary select object type Domain, enter the domain name
and choose Change.

All the tables and structures in which a field or component refers to the particular
domain are affected by changes made to the domain.

A conversion of these tables could be necessary (see Adjusting Database Structures
[Page 219]). This could be very time-consuming for tables containing a large number
of records. Foreign keys might also become inconsistent in such tables and
structures. You should therefore find out what effects the change will have using the
where-used list before you change a domain.

Changing the Data Type, Number of Places or Number of Decimal Places
You can change the data type and number of places or decimal places simply by overwriting the
relevant data. Note that a change of this type can cause all tables containing a field referring to
the changed domain to be converted.

You should therefore find out all the database tables in which a field refers to the domain before
making such a change. To do this, choose and then Indirect use in the next dialog box. A list
appears. Select DB tables and choose . All the database tables in which a field refers to the
domain are displayed.

Changing the Output Attributes
Changing the output attributes of a domain has an effect on the dialog behavior in all the screens
in which a field refers to this domain.

You should therefore find out which screens are affected before making such a change. To do
this, choose and then Indirect use in the next dialog box. A list appears. Select Screens and
choose . All the screens in which a field refers to the domain are listed.

Changing the Value Table
The value table [Page 158] is used as proposal value for foreign key definitions. If you change
the value table, use the where-used list to check if foreign keys that were already created also
have to be changed. You can find out which foreign keys are affected by finding all the fields that
refer to the domain and checking them against the changed value table.

 SAP AG BC - ABAP Dictionary

Deleting Domains

December 1999 165

Deleting Domains
Prerequisites
You can only delete a domain if it is no longer being used by a data element.

Procedure
1. In the initial screen of the ABAP Dictionary, select object type Domain and enter the

domain name.

 Choose and check if the domain is still being used in data elements.

2. Choose .

 A dialog box appears in which you are asked to confirm the deletion request.

3. Confirm the deletion request.

Result
The domain is now deleted if it is not being used in any data elements.

BC - ABAP Dictionary SAP AG

Search Helps

166 December 1999

Search Helps
The input help (F4 help) is a standard function of the R/3 System. The user can display the list of
all possible input values for a screen field with the input help. The possible input values can be
enhanced with further information. This is meaningful especially when the field requires the input
of a formal key.

Standard Input Help Process
A user calls an input help with the following steps (some steps can be omitted, depending on the
definition of the input help):

1. The user starts the input help to display the possible input values for a field (search field)
in a screen template.

2. The system offers the user a number of possible search paths. The user selects one of
these search paths. Each search path offers a number of restrictions to limit the number
of possible input values. These values are offered in a Dialog box for value restriction
when the search path is selected.

3. The user enters restrictions if required and then starts the search.

Carrier
Flight no.
Depart
Arrive

Dialog box for
value selectionRestrict value range

...

Database

LH

Selects all flights of
carrier LH

4. The system determines the values that satisfy the entered restrictions (hits) and displays
them as a list (hit list).

Code of flight connection

Carrier LH

No. Depart Arrive
400
402

...

Frankfurt New York
Frankfurt Berlin

452
452

Rome
Berlin

Berlin
Sydney

Select
an entry

SingaporeFrankfurt452

5. The user selects the most suitable line from the hit list by double-clicking.

 SAP AG BC - ABAP Dictionary

Search Helps

December 1999 167

6. The value of the search field is returned to the screen template (possibly together with
other values).

Steps 2 and 3 are omitted if there is only a single search path available. In this case the dialog
box for the value selection is offered immediately. You can also output the hit list directly after
starting the input help. Steps 2 to 4 are omitted in this case.

Function of a Search Help
This standard process can be completely defined by creating a search help in the ABAP
Dictionary. This search help only has to be assigned to the screen fields in which they should be
available (see Attaching Search Helps to Screen Fields [Page 176]).

There are two types of search help:

• Elementary search helps [Page 168] describe a search path. The elementary search
help must define where the data of the hit list should be read from (selection method),
how the exchange of values between the screen template and selection method is
implemented (interface of the search help) and how the online input help should be
defined (online behavior of the search help).

• Collective search helps [Page 172] combine several elementary search helps. A
collective search help thus can offer several alternative search paths.

See also:
Example for Search Helps [Page 198]

Creating Elementary Search Helps [Page 187]

Creating Collective Search Helps [Page 193]

BC - ABAP Dictionary SAP AG

Structure of an Elementary Search Help

168 December 1999

Structure of an Elementary Search Help
An elementary search help defines the standard flow of an input help. You can define the
following components of this flow in the search help:

• where does the data displayed in the hit list come from (selection method)

• what information should be displayed in the dialog box for value selection and in the hit
list (search help parameters)

• what field contents can be taken into account for hit list selections and which values in
the hit list can be returned to the screen fields (search help parameters)

• what dialog steps should be executed in the input help (dialog behavior)

Selection Method
The possible input values displayed for a field in the hit list are determined at runtime by
database selection.

SPFLI

SELECT * FROM SPFLI
WHERE CARRID = 'LH'.

Carrier

Flight number

. . .

Maintenance of Flights

LH

F4F4

Selection method
SPFLI

If all the data required in the hit list comes from one single table, you only have to select this table
(or a projection view on this table) as selection method. If there is a text table [Page 27] for the
table, its fields are also available in the input help. A table entry is linked with the corresponding
text by the existing foreign key.

If the data needed in the hit list comes from more than one table, you must link these tables with
a view (database view or help view). This view must be defined as the selection method.

If the underlying tables are client-specific, the client field must be contained in the view.
Otherwise selection for the input help would be for all clients.

 SAP AG BC - ABAP Dictionary

Structure of an Elementary Search Help

December 1999 169

Search Help Parameters
A search help has an interface consisting of parameters. These parameters define the fields of
the selection method that should be used in the input help.

A parameter of the search help must correspond to each field in the dialog box for value selection
and to each field of the hit list. The parameters are copied from the corresponding selection
method, that is they always have the same name as the corresponding field of the selection
method.

If the search is restricted with a parameter of the search help, this is used in the data selection for
formulating a WHERE condition for the field of the selection method with the same name. Vice
versa, the parameters of the search help are assigned the contents of the fields of the selection
method having the same name.

The search help should not contain any parameters for the clients. In the input help, selection is
automatically in the logon client of the user.

A data element must be assigned to each search help parameter, that is a type is always defined
for the search help parameters.

A search help can contain further parameters that do not correspond to any field of the selection
method. This is normally only necessary if the standard flow of the input help described by the
search help still has to be modified by with a search help exit [Page 196].

Import and Export Parameters
When an input help is called, the entries that the user already made in the input template are
taken into consideration. For example, if a user calls the input help for the flight number and
already specified the carrier, of course only the numbers of flights of this carrier should be
offered.
On the other hand, if the user selects one row of the hit list, more than one field of the input
template might have to be filled with data from the selected row of the hit list. For example, if the
flight number is obtained from the hit list, the city of departure and the destination should also be
returned in the screen template.

BC - ABAP Dictionary SAP AG

Structure of an Elementary Search Help

170 December 1999

Carrier

Flight number

. . .

F4

LH

0*

No. Departure city Arrival city

CarrierCarrier

04000400 FrankfurtFrankfurt New YorkNew York

04020402 FrankfurtFrankfurt New YorkNew York

LHLH

Take context into
consideration

Return values

The interface of a search help defines the context data that can be used in the input help and the
data that can be returned in the input template.

A parameter of a search help can be classified as:

• Import parameters: Parameters with which context information from the processed
input template (screen) may be copied to the help process.

• Export parameters: Parameters with which values from the hit list may be returned to
the input template.

A parameter can simultaneously be an input and an export parameter. A search help can also
contain parameters that are neither import nor export parameters. Such parameters could be
required for the internal input help process, for example.

When you attach a search help [Page 176], you must define where the import parameters of the
search help get their values from and the fields in which the contents of the export parameters
are returned. See also Value Transport for Input Helps [Page 185].

Description of the Online Behavior
The online behavior defines the steps executed in the input help process and the structure of the
hit list and dialog box for value selection.

The dialog type [Page 190] defines whether or not the dialog box for value selection should be
displayed. If you want to skip the dialog box for value selection, the hit list is displayed directly
after calling the input help.

When you define an elementary search help, you can define how the dialog box for value
selection and the hit list should look. For example, you can define the position of a parameter in
the dialog box for value selection here. The column position in which the values of a parameter
are displayed in the hit list can also be defined here.

 SAP AG BC - ABAP Dictionary

Structure of an Elementary Search Help

December 1999 171

See also:
Creating Elementary Search Helps [Page 187]

Example for Search Helps [Page 198]

BC - ABAP Dictionary SAP AG

Structure of a Collective Search Help

172 December 1999

Structure of a Collective Search Help
A collective search help combines several elementary search helps. The user can thus choose
one of several alternative search paths with a collective search help.

When you define a collective search help, you only have to specify the search helps that are to
be combined in the collective search help. In the input help, the values are transported between
the elementary search help selected by the user and the input template using the collective
search help. This is why a collective search help also has an interface for transporting the values.

Interface of the Collective Search Help
Like an elementary search help [Page 168], a collective search help has an interface of import
and export parameters. The data is exchanged between the screen template and the parameters
of the assigned elementary search helps using this interface.

 Field 1
Field 2

...

Input template

Interface of collective
search help

Parameter 1

Parameter 2Interface of elem.
search help

Parameter A

Parameter B

Assigned Search Helps
A collective search help comprises several elementary search helps. It combines all the search
paths that are meaningful for a field.

The interface parameters (import and export parameters) of the included search helps must be
assigned to the parameters of the collective search help. Not all of the parameters need to be
assigned, that is the assignment can be open for some of the parameters.

 SAP AG BC - ABAP Dictionary

Structure of a Collective Search Help

December 1999 173

Interface of collective
search help

Parameter 1
Parameter 2

Elementary
search help A

Elementary
search help B

Elementary
search help C

Parameter 1
Parameter 2
Parameter 3

Parameter 1
Parameter 2

Parameter 1
Parameter 2
Parameter 3

Both elementary search helps and other search helps can be included in a collective search help.
If other collective search helps are contained in a collective search help, they are expanded to
the level of the elementary search helps when the input help is called.

See also:
Creating Collective Search Helps [Page 193]

Example for Search Helps [Page 198]

BC - ABAP Dictionary SAP AG

Append Search Helps

174 December 1999

Append Search Helps
An append search help is used to enhance a collective search help (that is not the original in the
current system) by further search paths (elementary search helps) without modifications. This
technique can be used for example by special developments, country versions, SAP partners
and SAP customers to add further search paths to a collective search help in the SAP standard
version.

An append search help has a fixed assignment to a collective search help [Page 172] (of your
appending object). This appending object is enhanced with an append search help. The structure
of an append search help corresponds to the structure of a collective search help.

The append search help takes on the parameters of your appending object. An append search
help is automatically included in your appending object. The parameters of both search helps
having the same name are assigned to one another.

Interface of the
collective search help

Parameter 1
Parameter 2
Parameter 3

Parameter A
Parameter B

Elementary search help A

Append search help

Parameter D
Parameter E

Elementary search help B

Parameter 1
Parameter 2
Parameter 3

Parameter F
Parameter G

Elementary search help C

Parameter H
Parameter I

Elementary search help D

Parameter C
Further
search paths

Inclusion of the
append search help

Append search helps can also be used themselves to describe an input help. In this case they
are used like collective search helps. A search help exit cannot be assigned to an append search
help.

Elementary search helps without modifications can be hidden in an SAP collective search help
with an append search help. You have to include the search help to be hidden in the append
search help as well and hide the inclusion there. The search path defined with this search help is
no longer offered in the appending search help.

If the parameters of the appending object change, this change is not automatically
made in the append search help. Instead, you are informed that you should adjust

 SAP AG BC - ABAP Dictionary

Append Search Helps

December 1999 175

the parameters of the append search help. In this case you should check if you want
to change the assignments between the parameters of the append search help and
the search helps included in them.

It would not make sense to automatically change the interface of the appending
objects since if the interface of the collective search help changes, some of the
contained elementary search helps normally have to be adjusted to this change.

See also:
Creating an Append Search Help [Page 195]

BC - ABAP Dictionary SAP AG

Attaching Search Helps to Screen Fields

176 December 1999

Attaching Search Helps to Screen Fields
A search help can influence the behavior of a field when the input help is called. The search help
must be assigned to the field in order to do this. You have the following options for this
assignment:

• Attach the search help to a data element [Page 177]

• Attach the search help to a check table [Page 179]

• Attach the search help to a table field [Page 181]

• Attach the search help to a screen field [Page 183]

More than one search help can thus be assigned to a field. Conflicts when calling the input help
are resolved with a hierarchy of search help attachments [Page 184].

Search help A is assigned directly to a field in the screen. Search help B is attached
to the corresponding table field. There is a check table for the field to which search
help C is attached. Search help D is attached to the data element of the field.

Field

...

Screen

Search help A

Search help C

Search help B

Search help D

Attach to screen
definition

Data element

Attach to data
element

Attach to
check table

Check table

Attach to
field

Table/structure

 SAP AG BC - ABAP Dictionary

Attaching to Data Elements

December 1999 177

Attaching to Data Elements
The search help can be used by all screen fields that refer to the data element [Page 132]. All the
fields with the same meaning therefore have an identical input help.

When the search help is attached to a data element, an export parameter of the search help
must be assigned to the data element. If the user selects a line of the hit list in the input help, the
contents of this parameter are returned to the corresponding screen field. It is not possible to
return several values when the search help is attached to a data element.

Table SPFLI (flight schedule) contains the field DISTID for the unit (kilometers, miles)
of the flight distance specified in the field DISTANCE. The field DISTID refers to the
data element S_DISTID. The elementary search help S_UNIT_DIST (search for
distance units) is attached to this data element . The export parameter MSEHI of the
search help is assigned to the data element.

The search help S_UNIT_DIST is therefore available for the field DISTID when flight
data is maintained in table SPFLI. If the user selects a line of the hit list in the input
help, the contents of parameter MSEHI are returned to the screen field.

Search help S_UNIT_DIST

MSEHI MSEH3 ...

... DISTANCE FLTYPE

Table SPFLI

DISTID

Data element S_DISTID

Attachment of search help
to data element

...

Distance

Dist. Id.
...

Data element for field

Reference to table field in the ABAP Dictionary

If the parameter assigned to the data element is also an import parameter of the search help, the
contents of the search field are used for the value selection if they contain a pattern. Other import
parameters of the search field cannot be taken into consideration when the search help is
attached to a data element.

BC - ABAP Dictionary SAP AG

Attaching to Data Elements

178 December 1999

The attachment of the search help to the data element is part of the definition of the data
element. You can find out how to attach a search help to a data element in Creating Data
Elements [Page 134].

 SAP AG BC - ABAP Dictionary

Attaching to Check Tables

December 1999 179

Attaching to Check Tables
If a field has a check table, the set of all possible entries to the field is defined by the contents of
this check table (see Foreign Keys [Page 19]). The contents of the key fields of the check table
are therefore offered automatically in the input help. If a text table [Page 27] is defined for the
check table, the contents of the first text field of this text table is also displayed in the user’s logon
language.

This input help coming from the check table can be further edited by assigning a search help to
the check table. The assigned search help can then be used by all screen fields that are checked
against the table.

If a search help is attached to a check table, it should display the data contained in this check
table. In this case, the check table itself or a view on this check table must be given as the
selection method of the search help.

When a search help is assigned to a check table, there must be an assignment between the key
fields of the check table and the parameters of the search help. If an export parameter of the
search help is assigned to a key field of the check table, the contents of this parameter are
returned to the corresponding screen field as soon as the user has selected a line of the hit list in
the input help. If an import parameter of the search help is assigned to a key field of the check
table, the field contents are used for the value selection (see Value Transport for the Input Help
[Page 185]).

The field CONNID (number of the flight connection) of table SFLIGHT (flights) is
checked against table SPFLI (flight schedule). The elementary search help H_SPFLI
(search for flights by cities of departure and arrival) is allocated to table SPFLI. This
search help is available for the field CONNID when data is entered in table
SFLIGHT.

Search help H_SPFLI does not contain a client field since for the input help the
selection is always made in the logon client of the user.

BC - ABAP Dictionary SAP AG

Attaching to Check Tables

180 December 1999

Table SFLIGHT
MANDT CARRID FLDATECONNID ...

Check table SPFLI
MANDT CARRID CONNID ...CITYFROM CITYTO ...

Search help H_SPFLI
CARRID CONNID CITYFROM CITYTO

Field assignment in the foreign key

Key fields Assignment between search help
parameters and key fields of the check table

...
Carrier

Connect.
...

Reference to table field in ABAP Dictionary

The search help attachment is part of the definition of the table/structure to which the search help
is attached. You can find out how to attach a search help to a table in Creating Tables [Page 71].

 SAP AG BC - ABAP Dictionary

Attaching to a Table Field or Structure Field

December 1999 181

Attaching to a Table Field or Structure Field
The search help can be used by all screen fields that refer to the table field or structure field. The
search help parameters and the fields of the table or structure must be assigned to one other in
this type of attachment.

If an export parameter of the search help is assigned to a table field, the contents of this
parameter are returned to the corresponding screen field as soon as the user has selected a line
of the hit list in the input help. If an import parameter of the search help is assigned to a table
field, the field contents are used for the value selection (see Value Transport for the Input Help
[Page 185]).

Normally some parameters of the search help cannot be assigned to a table field. The
assignment is thus left open for some search help parameters. A constant or any other field that
is searched for in the module pool when the input help is called can also be assigned to a search
help parameter.

The search help STRAVELAG_NAME permits you to search for the number of a
travel agency using supplementary information about the agency (name, city,
country). This search help should be available to all screen fields that reference field
AGENCYNUM (number of the agency) in table STRAVELAG. The search help is
therefore directly attached to the field AGENCYNUM of table STRAVELAG. All the
parameters of the search help can be allocated to corresponding table fields.

Table STRAVELAG

MANDT NAME ...STREET CITY ...

AGENCYNUM NAME CITY COUNTRY

COUNTRYAGENCYNUM

Search help STRAVELAG_NAME

Assignment between
search help
parameters and table
fields

Agencyno.

Name

Street

...

Reference to table field
in the ABAP Dictionary

The search help attachment is part of the definition of the table/structure to which the search help
is attached. You can find out how to attach a search help to a table field in Creating Tables [Page
71].

BC - ABAP Dictionary SAP AG

Attaching to a Table Field or Structure Field

182 December 1999

 SAP AG BC - ABAP Dictionary

Attaching to Screen Fields

December 1999 183

Attaching to Screen Fields
A search help can be directly assigned to a screen field. In this case, the search help is only
available for this screen. If the same field is used on several screens, the search help should
generally be attached to the referenced table field or structure field (see Attaching to Table Fields
[Page 181]).

You can attach a search help directly to a screen in the following ways.

• The name of the search help must be entered in the Screen Painter in the Attributes for
the field in the field Search help.

• The name of the search help can be defined for selection screens in ABAP reports in the
PARAMETERS or SELECT-OPTIONS statement directly following the supplement AS
SEARCH PATTERN.

In both cases this assigns the first parameter of the search help to the screen field. As a result,
only a value from the hit list can be returned to the screen template.

BC - ABAP Dictionary SAP AG

Hierarchy of the Search Help Call

184 December 1999

Hierarchy of the Search Help Call
Search helps can be attached [Page 176] to screen fields in different ways. Several search helps
can thus be assigned to one screen field. Conflict situations when calling the input help are
resolved with a hierarchy of different types of search help attachment.

When you call the input help for a screen field, there is first a check if an input help is defined for
the field on the screen. There are three cases here. If there is a programmed help with PROCESS
ON VALUE-REQUEST, it is executed. If there is no programmed help, the system tries to call the
search help assigned to the field on the screen. If no search help is assigned to the field on the
screen, the help defined with FIELD SELECT or FIELD VALUES is offered.

If no input help is defined for the field on the screen, the system tries to call the search help
attached to the table field. If there is no search help here, it tries to display the check table help.
There are two cases here. If a search help is attached to the check table, it is displayed.
Otherwise only the key values of the check table are displayed. If there is a text table [Page 27]
for the check table, the text for the key value is added in the user’s logon language.

If there is no check table for the field, the system tries to call the search help from the data
element. If there is no search help for the data element either, existing domain fixed values are
displayed. The calendar help and time help are automatically provided for fields with data type
DATS and TIMS.

Search help from screen

Search help for field

Check table help

Search help from
data element

Fixed values

Time or
calendar help

Search help
for check table

Check table
with text table

Key values of
check table

Does not exist
Exists

PROCESS ON
VALUE-REQUEST

Search help for
screen field

Checks of flow
logic

FIELD … SELECT

FIELD … VALUES

Input help from
Dictionary

Input help from
ABAP Report

 SAP AG BC - ABAP Dictionary

Value Transport for Input Helps

December 1999 185

Value Transport for Input Helps
There is a value transport between the field contents on the screen and the interface of the
search help when the input help is called and when a line of the hit list is selected. The values
already entered on the screen can then be used as restrictions for a selection from the hit list.
Only those hits that are consistent with the values already entered are displayed.

Screen

A
B
C
D
E

A
B

C
D
E

...

Referenced table
or structure

A
B
C
F
G

Attached search help

Import/export

Import

Export

Import/export

Internal parameter

A B C F

Hit list

Return the contents of
parameters A and C
when a row in the hit list
is selected

Contents of screen fields A and B
are taken into consideration when
you select the hit from the selection
method

In the above example, screen fields A, B and C are linked with parameters of the search help. As
a result, values can only be transported between the screen and the search help for these three
fields. Existing contents of screen fields A and B can be used for selecting the hit list since they
are linked with an import parameter of the search help. The values of parameters A and C can be
returned to the screen from the hit list since these parameters are declared as export parameters
of the search help.

Parametrizing the Import Parameters of the Search Help
If the search help is attached to the screen field with a data element (Attaching to Data Elements
[Page 177]) or directly in the screen (Attaching to Screen Fields [Page 183]), only one search
help parameter is assigned to this field. The value transport can only take place between the
screen field and this parameter.

If the search help is attached to the table field (Attaching to Table Fields [Page 181]) or to the
check table of the field (Attaching to Tables [Page 179]), a value transport can take place for all
the screen fields that are linked with a parameter of the search help.

When the input help is called, the system tries to find a field with the same name on the screen
for each import parameter of the search help that is attached to a table or structure field. If such a
field is found, the contents of the screen field are copied to the search help parameter.

There are at most four steps when searching for the screen field with the same name:

BC - ABAP Dictionary SAP AG

Value Transport for Input Helps

186 December 1999

• If the input help is called in a step loop, a field with the same name is searched for in this
step loop.

• If the step loop does not contain a field with the same name, the corresponding subscreen is
searched.

• If the subscreen does not have a field with the same name, the main screen is searched.

• If the main screen does not contain a field with the same name either, the module pool of the
corresponding screen is searched.

Module pool
of the screenMain screen

Step loop

Subscreen

?

?

?

?

Call the input help in
the step loop

Returning the Values from the Hit List
Values are only returned at the level where the input help was called. If the input help is called for
example within a step loop, the values are only returned from the hit list in fields of the
corresponding line of this step loop. In particular, values are never returned from the hit list to the
module pool of the screen.

The values of the hit list are only returned in input fields and in fields that are only linked with an
export parameter of the search help (used to parametrize pure text fields that are not used in the
selection).

 SAP AG BC - ABAP Dictionary

Creating Elementary Search Helps

December 1999 187

Creating Elementary Search Helps
Procedure

1. In the initial screen of the ABAP Dictionary, select object class Search help, enter the
name of the search help and choose Create.

 A dialog box appears in which you must select the type of search help.

2. Select Elementary search help and choose .

 The maintenance screen for elementary search helps appears.

3. Enter an explanatory text in the field Short text.

 You can for example find the search help at a later time using this short text.

4. In the Definition tab page enter the selection method of the search help.

 You can enter the name of a table or a view (database view, projection view or help
view) here. If you enter a table that has a text table [Page 27], the name of the text table
is automatically entered in the corresponding field.

5. Using the input help (F4 help), select fields of the selection method as parameter in the
Search help parameter area. Select the fields that should be used in the dialog box for
value selection or in the hit list.

 If the selection method is a table that has a text table, both the fields of the table and the
fields of the text table are offered in the input help.

 The data element of the parameter is automatically copied from the selection method.
The data element defines the output attributes and the F1 help of the parameter in the hit
list and in the dialog box for value selection.

 You can assign the parameter another data element. To do so, select the Mod flag. The
Data element field is now ready for input. Then select a data element with the input help
(F4 help). Only data elements whose data type, length and number of decimal places is
the same as those of the previous data element can be assigned.

 This removes the link between the data element of the search help parameter and the
data element of the selection method field having the same name. If you cancel the Mod
flag, the data element of the assigned table field is used again.

6. Define the attributes of the search help parameters.

 Select the IMP flag if it is an import parameter. Select the EXP flag if it is an export
parameter.

 You can define the dialog for the input help with the fields LPos, SPos and SDis. Enter
the parameter position in the hit list in LPos. If you enter nothing or the value 0 here, the
parameter is not displayed in the hit list.

BC - ABAP Dictionary SAP AG

Creating Elementary Search Helps

188 December 1999

CARRID

CITYTO
CITYFROM
CONNID

Parameter LPos
1
2
3
4

LH
LH
LH
AA
AA

103
67

24
188
15

BerlinBonn
Munich
Frankfurt
New York
New York

Berlin
Boston
Miami
London

...

CA CO FROM TO Hit list

Search help H_SPFLI
Search by flight number

 Enter the parameter position in the dialog box for value selection in SPos. If you enter
nothing or the value 0 here, the parameter is not displayed in the dialog box for value
selection.

Search help H_SPFLI
(Search by flight number)

CARRID

CITYTO
CITYFROM
CONNID

Parameter SPos
1
2
3
4

Carrier
Flight no.
Cityfrom
Cityto

Dialog box for
value selection

 Set the SDis flag if the parameter should be a pure display field in the dialog box for
value selection. The user is thus informed that the contents of the parameter restrict the
value, but he cannot change this restriction. This makes sense for example when the
parameter is an import parameter or if it has a default value.

 You can assign the parameter a default value [Page 192] in the Default value field.

7. Select the dialog type [Page 190] of the search help.

 The dialog type defines how the hit list is displayed in the input help.

8. Save your entries.

 A dialog box appears in which you have to assign the search help a development class.

9. Choose .

Do not forget to link the search help to a screen field [Page 176]. The search help
attachment is not part of the search help definition; it is part of the object definition to
which the search help is attached.

 SAP AG BC - ABAP Dictionary

Creating Elementary Search Helps

December 1999 189

Result
The search help is activated. You can find information about the activation flow in the activation
log, which you can display with Utilities →→→→ Activation log. If errors occurred during activation, the
activation log is automatically displayed.

Other Options
• Assign a hot key: If the search help is to be accessed with a hot key [Page 191], you

must enter a one-place ID in the Hot key field. All the elementary search helps contained
in a collective search help should have different short cuts.

• Assign a search help exit: In exceptions, you might have to change the standard flow
defined by the search help with a search help exit [Page 196]. In this case enter the
name of the search help exit in the corresponding field.

• Test the search help: You can test the flow of an input help defined by the elementary
search help with . A dialog box appears in which you can simulate the behavior of the
search help under different conditions. You can obtain information about the options
provided in this window with .

See also:
Structure of an Elementary Search Help [Page 168]

BC - ABAP Dictionary SAP AG

Dialog Types

190 December 1999

Dialog Types
The dialog type of an elementary search help defines how the hit list is displayed when the input
help is called.

The following dialog types are possible:

• Immediate value display: The hit list is immediately displayed when the input help is
called. This is only meaningful if the hit list usually only contains a few entries.

• Complex dialog with value restriction: The dialog window for restricting values is
offered immediately. Choose this option if the list of possible entries is usually very large.
If the user limits the amount of data to be processed, the hit list will become more
comprehensible and the system load during value selection will be reduced.

• Dialog depending on number of values: If the hit list contains less than 100 entries, it
is displayed immediately. If the hit list contains more than 100 entries, the dialog box for
restricting values is displayed.

 SAP AG BC - ABAP Dictionary

Hot Keys

December 1999 191

Hot Keys
The hot key is used to select the elementary search help from the collective search help and to
enter the restrictions in the dialog box for restricting values directly from the entry field. If the user
often searches for values using the same search help, this procedure can save time.

The short cut must be entered in the input field according to the following convention:

=<Hot key>.S1.S2.S3....

S1, S2, S3, etc. are the restrictions that would be entered in the corresponding dialog box in this
order. Each entry is interpreted generically.

City of arrival

Carrier

. . .

Search by flight

AZ*

Flight number

Selection popup window of
elementary search help A

Hot key in
input field

=A.AZ.123.FRA

123*

FRA*

If the elementary search help stored as standard search help is to be used, the hot key need not
be specified. If S1 contains more than one character, the first separator ‘.’ can also be omitted.

If the hot key is defined without restrictions (=<Hot key>), the dialog box for restricting values is
called. If restrictions are defined, the dialog box for restricting values is skipped and the hit list is
displayed immediately. If exactly one hit is found, the hit list is not displayed. The values of the
hits found are immediately returned to the screen template in this case.

BC - ABAP Dictionary SAP AG

Default Values for Search Help Parameters

192 December 1999

Default Values for Search Help Parameters
A default value can be assigned to a parameter of a search help.

The following default values are allowed:

• Constants, which are enclosed in apostrophes when they are defined in the maintenance
screen. The constant must be defined in internal representation for parameters whose
data type has an editing template (such as date and time). For example, the date
01.03.1998 must be defined as ‘19980301’.

• System fields, i.e. fields of structure SYST, where the prefix SY- can be used in place of
the prefix SYST-.

• Get parameter IDs, with which the parameter is assigned values from SAP memory.

The parameter is assigned the default value in the input help process in the following cases:

• If the parameter is not an import parameter.

• If nothing was assigned to the parameter in the search help attachment with which the
search help was attached to the screen field.

• If a field that does not exist in either the screen or the flow logic in the input help process
was assigned to the parameter in the search help attachment.

• If a search help is included in a collective search help and the parameter is not linked to
any parameter of this collective search help.

 SAP AG BC - ABAP Dictionary

Creating Collective Search Helps

December 1999 193

Creating Collective Search Helps
Procedure

1. In the initial screen of the ABAP Dictionary, select object class Search help, enter the
name of the search help and choose Create.

A dialog box appears in which you must select the type of search help.

2. Select Collective search help and choose .

The maintenance screen for collective search helps is displayed.

3. Enter an explanatory text in the field Short text.

You can for example find the search help at a later time using this short text.

4. In the Definition tab page enter the parameters of the collective search help.

Select the Imp flag if it is an import parameter. Select the Exp flag if it is an export
parameter.

Define the types for the parameters of a collective search help by assigning a data
element. Enter the name of the data element that describes the contents of the search
help parameter in the Data element field.

You can assign the parameter a default value [Page 192] in the Default value field.

5. In exceptions it could be necessary to change the standard process defined by the
search help. You can implement the deviation from the standard using a search help exit
[Page 196].

In this case enter the name of the search help exit in the corresponding field.

6. On the Included search helps tab page, define the search helps that you want to include
in the collective search help.

You can include elementary search helps and collective search helps.

Use the Hide flag to control whether an included search help should appear in the dialog
box for selecting the elementary search help. If the flag is set, the search help is not
offered.

It makes sense to hide search help inclusions if one or more search paths in the
standard system should not be used in a concrete R/3 System. Similarly, search help
inclusions can also be already hidden in the standard system because they only can be
used meaningfully in a few R/3 Systems. You have to cancel the flag in this case.

7. Position the cursor one after the other on each allocated search help and choose
Parameter assignment.

In the next screen, enter the parameter names of the elementary search helps to which
the corresponding parameters of the collective search help should be assigned in the
field Reference parameter.

You can select the parameters contained in the included search help using the input
help. Create a proposal for the assignment with Proposal.

8. Save your entries.

BC - ABAP Dictionary SAP AG

Creating Collective Search Helps

194 December 1999

A dialog box appears in which you have to assign a development class to the search
help.

9. Choose .

Result
The collective search help is activated. You can find information about the activation flow in the
activation log, which you can display with Utilities →→→→ Activation log. If errors occurred when the
collective search help was activated, the activation log is automatically displayed.

Do not forget to link the search help to a screen field [Page 176]. The search help
attachment is not part of the search help definition; it is part of the object definition to
which the search help is attached.

Other Options
You can test the flow of an input help defined by the collective search help with . A dialog box
appears in which you can simulate the behavior of the search help under different conditions.
You can obtain information about the options provided in this window with .

See also:
Structure of Collective Search Helps [Page 172]

 SAP AG BC - ABAP Dictionary

Creating an Append Search Help

December 1999 195

Creating an Append Search Help
1. In the initial screen of the ABAP Dictionary, enter the name of the collective search help

to which you want to add the append search help Choose Display.

 The maintenance screen of the collective search help appears in display mode.

2. Choose Goto →→→→ Append search helps.

 A dialog box appears in which you must enter the name of the append search help. This
name should lie in the customer namespace (or in the namespace of the partner or
special development).

3. Choose .

The maintenance screen of the append search help appears. You can now continue as when
creating a collective search help [Page 193].

Note the following:

• The collective search help always uses the interface of its appending objects. This is why
you cannot change the entries in the Definition tab page.

• If you want to hide a search help included in the appending object with the append
search help, you have to include this search help in the append search help. Enter the
name of the search help to be hidden in the Included search helps tab page and select
Hidden.

• The definition of the appending search help is automatically adjusted when the append
search help is activated. The append search help is automatically included in the
appending object.

See also:
Append Search Helps [Page 174]

BC - ABAP Dictionary SAP AG

Search Help Exit

196 December 1999

Search Help Exit
A search help describes the standard input help process. In exceptions it could be necessary to
deviate in some points from this standard. Such a deviation from the standard can also be
implemented with a search help exit.

The input help process should look as much the same as possible throughout the
entire system. Search help exits should therefore only be used for exceptions.

A search help exit is a function module that has a predefined interface. A search help exit is
called at certain times by the help processor. The administrative data of the help processor are
passed to the search help exit using the interface.

You can store your own program logic that manipulates this administrative data in the search
help exit. Individual steps of the input help process can be skipped with a search help exit.

Search help exit F4UT_OPTIMIZE_COLWIDTH adjusts the column width in the hit
list to the contents of the column. It makes sense to use this search help exit when
the columns of the hit list have to be made very wide for extreme cases (e.g. for
name fields), but normally they will contain much smaller values.

Each search help exit must have the same interface as function module
F4IF_SHLP_EXIT_EXAMPLE (is used as pattern for all the search help exits to be created). You
can find more information about the interface in the documentation for this function module.

Calling the Search Help Exit
If a search help exit is assigned to a search help, the help processor calls it at the following
times:

Before Displaying the Dialog Box for Selecting the Required Search Path.
It is only called for collective search helps. Using the search help exit, the set of elementary
search helps available can for example be restricted depending on the context.

Before Displaying the Dialog Box for Entering Search Conditions.
You can either influence the dialog for entering search conditions or skip it altogether here. You
can also influence how the selection screen looks.

Before Selecting Data.
The data selection can be partly or completely copied from the search help exit. This can become
necessary if the data selection cannot be implemented with a SELECT statement for a table or a
view.

Before Displaying the Hit List.
You can influence the display of the hit list in this step with the search help exit. You can reduce
the number of values displayed here. For example, you can display only values for which the
person calling the input help has authorization. You can also copy the complete hit list from the
search help exit.

 SAP AG BC - ABAP Dictionary

Search Help Exit

December 1999 197

Before Returning the Values Selected by the User to the Input Template.
It could be advisable to intervene at this time if control of the further transaction flow should
depend on the value selected. A typical example is setting set/get parameters.

Search help SFLIGHT is used to find flight data. When they look for flights, the staff
of travel agencies normally need information about whether there are still seats
available on the flight. The selection method of the search help (view on tables
SCARR, SFLIGHT and SPFLI) does not directly contain this information. The
selection method only contains information about the number of seats available on
the flight and how many seats are already reserved.

From this information, search help exit SAPBC_GLOBAL_F4_SFLIGHT computes
the number of seats still available and returns the results in a parameter of the
search help. The number of seats still available can thus be displayed in the hit list.

You therefore only have to program one action in the search help exit for the call
before displaying the hit list.

Date of flight F4F4

Carrier

. . .

Maintenance of Bookings

AZ

Flight number

...

...

Depart city
Arrival city

Rome

. . .

SELECT * FROM
SFLIGHTS...

 Search help exit
SAPBC_GLOBAL_F4_SFLIGHT

No. Depart city Free

CarrierCarrier

05550555 RomeRome 147147

05550555 RomeRome 198198

AlitaliaAlitalia

.

. . .

. . .

. . .

. . .

2

3

4

5

BC - ABAP Dictionary SAP AG

Example for Search Helps

198 December 1999

Example for Search Helps
Each customer of a carrier (see Flight Model [Page 295]) or of a travel agency has a customer
number. You want to find a search option for this customer number.

The user must be offered two different search paths.

• The user should be able to search for the customer number using the customer data,
such as the name and address.

• The user should be able to search for the customer number using existing customer
bookings.

You can provide the required search option by creating a collective search help [Page 172]
SCUSTOM. Two elementary search helps [Page 168] SCUSTOM_NAME (for searching with the
customer data) and SCUSTOM_BOOK (for searching with the existing bookings) are created for
the actual search paths. These elementary search helps are included in the collective search
help.

Elementary Search Help SCUSTOM_NAME
This elementary search help should enable you to search for the customer number using the
name and address (street, city, country). All this data is contained in table SCUSTOM. Table
SCUSTOM must therefore be selected as the selection method of the elementary search help.

SCUSTOM
Selection method
table SCUSTOM

Street

Name

City

Country

Value selection with search help

John Smith

US

You now have to decide which fields of the selection method are needed for the input help
process. These are the fields that should appear either in the dialog box for restricting values or
in the hit list.

In the dialog box for restricting values, the user should be able to restrict values with the
customer’s name and address, i.e. the fields for the street, city and country. These fields as well
as the customer’s number (the information to be found must always be in the hit list) should
appear in the hit list. The fields ID, NAME, STREET, CITY and COUNTRY of table SCUSTOM
must be included in the search help as parameters.

The parameter ID is declared to be an import parameter. A pattern entered in the corresponding
field of a screen template can therefore be used directly for the value selection. Restrictions for
the other parameters of the search help must be entered in the dialog box for value selection.

All the parameters of the search help are declared to be export parameters. As a result, all the
parameters of the hit list can be returned to the screen template if the corresponding fields are
available there.

 SAP AG BC - ABAP Dictionary

Example for Search Helps

December 1999 199

Elementary Search Help SCUSTOM_BOOK
This elementary search help should enable you to search for the customer number using existing
customer bookings. The flight data for the booking (flight number, date of flight, city of departure,
city of arrival) and the name of the customer should be used for the search here. This data is
distributed on the tables SBOOK (bookings), SCUSTOM (name) and SPFLI (cities of departure
and arrival). The following graphic shows the relationship between the relevant tables, that is the
existing foreign key relationships.

SPFLI

SBOOK

SCUSTOM

MANDT CARRID CONNID ...

MANDT CARRID CONNID CUSTOMID

MANDT ID ...

In this case a database view SCUS_BOOK must be created on these three tables (see Example
for Views [Page 127]) as selection method. The tables in the view (join) are linked as defined by
the existing foreign key relationships (see Foreign Key Relationship and Join Condition [Page
102]).

SCUS_BOOK
Selection method
view SCUS_BOOK

Name

Airline

Cityfrom

Cityto

Value selection with search help

SCUSTOM
SBOOK SPFLI

In the dialog box for restricting values, the user should be able to restrict the search for booking
data with the carrier ID, customer name, city of departure and city of arrival The flight date and of
course the customer number should also be displayed in the hit list. Fields CARRID, FLDATE,
CUSTOMID, NAME, CITYFROM and CITYTO of view SCUS_BOOK must be included in the
elementary search help as parameters of the search help.

The parameter CUSTOMID is declared to be an import parameter. All the parameters of the
search help are export parameters.

BC - ABAP Dictionary SAP AG

Example for Search Helps

200 December 1999

Collective Search Help SCUSTOM
The two elementary search helps are now included in the collective search help. You must now
allocate the parameters of the elementary search helps to the parameters of the collective search
help.

Collective search help SCUSTOM

ID NAME CITY COUNTRY

Elementary search help SCUSTOM_BOOK

CARRID CUSTOMID NAME ...

Elementary search help SCUSTOM_NAME

ID STREET CITY COUNTRYNAME

The parameter ID of the collective search help is marked as an import parameter. All the
parameters are export parameters. The values can thus be copied from the hit list to the screen
template.

Attaching the Search Help
In order to be able to use the search help SCUSTOM in screen templates, the attachment of the
search help (see Attaching Search Helps with Screen Fields [Page 176]) must be defined.

Attaching to the Check Table SCUSTOM
The search help should be available for all the fields that are checked against table SCUSTOM.
The search help therefore must be attached to table SCUSTOM. The search help parameters
must therefore be assigned to the key fields of table SCUSTOM.

The parameter ID of search help SCUSTOM is here assigned to the field ID of table SCUSTOM
in this field assignment. No assignment is possible for all other parameters of the search help
(NAME, CITY and COUNTRY) since table SCUSTOM does not contain this information as key
fields.

Attaching to a Field of Table SCUSTOM
In order that the search help is available when the field SCUSTOM-ID is directly copied to the
input template, you have to attach the search help to this field.

 SAP AG BC - ABAP Dictionary

Example for Search Helps

December 1999 201

With this type of attachment, all the parameters of the search help can be assigned to the
corresponding fields of the table.

Table SCUSTOM

MANDT NAME ... CITY ...

Collective search help SCUSTOM

ID NAME CITY COUNTRY

Search field

COUNTRYFORMID

BC - ABAP Dictionary SAP AG

Lock Objects

202 December 1999

Lock Objects
The R/3 System synchronizes simultaneous access of several users to the same data records
with a lock mechanism [Page 210]. When interactive transactions are programmed, locks are set
and released by calling function modules (see Function Modules for Lock Requests [Page 206]).
These function modules are automatically generated from the definition of lock objects in the
ABAP Dictionary.

Structure of a Lock Object
The tables in which data records should be locked with a lock request are defined in a lock object
together with their key fields. When tables are selected, one table (the primary table) is first
selected. Further tables (secondary tables) can also be added using foreign key relationships
(see also Conditions for Foreign Keys [Page 209]).

Table T1

Table T2

Table T3K4 K5 K6 D3 D4

D2K3K2

K1 D1

Foreign key

Foreign key

Lock Arguments
The lock argument of a table in the lock object consists of the key fields of the table.

The lock argument fields of a lock object are used as input parameters in the function modules
for setting and removing locks generated from the lock object definition. When these function
modules are called, the table rows to be locked or unlocked are specified by defining certain
values in these fields. These values can also be generic. The lock argument fields therefore
define which subset of the table rows should be locked.

Lock argument T1

Lock argument T2

Lock argument T3

K1

K6K5K4

K3K2

 SAP AG BC - ABAP Dictionary

Lock Objects

December 1999 203

The simplest case of a lock object consists of exactly one table and the lock argument of the
table is the primary key of this table. Several tables can also be included in a lock object. A lock
request therefore can lock an entire logical object, and not only a record of a table. Such a logical
object can be for example a document comprising an entry in a header table and N entries in a
position table.

Red entries are locked

Call the lock function module with K1=2
and K3=1 (K6 unspecified)

K1 D1

1
2
3
...

...
...
...

K2 K3

1
2
2

...

...

...

...

D2

3
3

...

...

1
1
2
1
3

K4 K5

1
2
2

...

...

...

...

D3

2
2

...

...

1
1
1
1
3

2
3

D4K6

3
1

...

...

...

...

...

...

...
...
...

A
A
B
C
A
B
A

Table T1 Table T2 Table T3

Locks can also be set from programs in other systems with the corresponding interfaces if the
lock object was defined with RFC authorization.

A lock mode [Page 205] can be assigned for each table in the lock object. This mode defines
how other users can access a locked record of the table.

Table SFLIGHT in the flight model [Page 295] contains all the scheduled flights of a
carrier. Field SEATSMAX contains the number of seats available. Field SEATSOCC
contains the number of seats already booked. If a booking is made for a customer
(by a travel agency or sales desk), you must check whether there are enough seats
available. The number of seats booked is incremented when the booking is made.

This mechanism must ensure that two sales desks do not make the same booking at
the same time and that the flight is not overbooked.

This can be done by creating lock object ESFLIGHT. Only the table SFLIGHT must
be included in this lock object. The flight can then be locked (with the function
modules generated from the lock object) when booking. If another sales desk also
wants to book seats for this flight, the lock will prevent the flight from being
overbooked.

BC - ABAP Dictionary SAP AG

Lock Objects

204 December 1999

See also:
Example for Lock Objects [Page 216]

Creating Lock Objects [Page 213]

Deleting Lock Objects [Page 215]

 SAP AG BC - ABAP Dictionary

Lock Mode

December 1999 205

Lock Mode
Sperrtabelle [Ext.]

Kollisionen von Sperren [Ext.]

The lock mode controls whether several users can access data records at the same time. The
lock mode can be assigned separately for each table in the lock object. When the lock is set, the
corresponding lock entry is stored in the lock table of the system for each table.

Access by more than one user can be synchronized in the following ways:

• Exclusive lock: The locked data can only be displayed or edited by a single user. A
request for another exclusive lock or for a shared lock is rejected.

• Shared lock: More than one user can access the locked data at the same time in display
mode. A request for another shared lock is accepted, even if it comes from another user.
An exclusive lock is rejected.

• Exclusive but not cumulative: Exclusive locks can be requested several times from the
same transaction and are processed successively. In contrast, exclusive but not
cumulative locks can be called only once from the same transaction. All other lock
requests are rejected.

See also:
Lock Collisions

BC - ABAP Dictionary SAP AG

Function Modules for Lock Requests

206 December 1999

Function Modules for Lock Requests
Das Eigentümerkonzept von Sperren [Ext.]

Sperrkonflikts [Ext.]

Activating a lock object in the ABAP Dictionary automatically creates function modules for setting
(ENQUEUE_<lock object name>) and releasing (DEQUEUE_<lock object name>) locks.

The generated function modules are automatically assigned to function groups. You
should not change these function modules and their assignment to function groups
since the function modules are generated again each time the lock object is
activated.

Never transport the function groups, which contain the automatically generated
function modules. The generated function modules of a lock object could reside in a
different function group in the target system. Always transport the lock objects. When
a lock object is activated in the target system, the function modules are generated
again and correctly assigned to function groups.

Parameters of the Function Modules
Field Names of the Lock Object
The keys to be locked must be passed here.

A further parameter X_<field> that defines the lock behavior when the initial value is passed
exists for every lock field <field>. If the initial value is assigned to <field> and X_<field>, then a
generic lock is initialized with respect to <field>. If <field> is assigned the initial value and
X_<field> is defined as X, the lock is set with exactly the initial value of <field>.

Parameters for Passing Locks to the Update Program
A lock is generally removed at the end of the transaction or when the corresponding DEQUEUE
function module is called. However, this is not the case if the transaction has called update
routines. In this case a parameter must check that the lock has been removed.

Parameter _SCOPE controls how the lock or lock release is passed to the update program (see
The Owner Concept for Locks). You have the following options:

• _SCOPE = 1: Locks and lock releases are not passed to the update program. The lock is
removed when the transaction is ended.

• _SCOPE = 2: The lock or lock release is passed to the update program. The update
program is responsible for removing the lock. The interactive program with which the lock
was requested no longer has an influence on the lock behavior. This is the standard
setting for the ENQUEUE function module.

• _SCOPE = 3: The lock or lock release is also passed to the update program. The lock
must be removed in both the interactive program and in the update program. This is the
standard setting for the DEQUEUE function module.

 SAP AG BC - ABAP Dictionary

Function Modules for Lock Requests

December 1999 207

Parameters for Lock Mode
A parameter MODE_<TAB> exists for each base table TAB of the lock object. The lock mode
[Page 205] for this base table can be set dynamically with this parameter. Valid values for this
parameter are S (shared), E (exclusive) and X (exclusive but not cumulative).

The lock mode specified when the lock object for the table is created is the default value for this
parameter. This default value can however be overridden as required when the function module
is called.

If a lock set with a lock mode is to be removed by calling the DEQUEUE function module, this call
must have the same value for the parameter MODE_<TAB>.

Controlling Lock Transmission
Parameter _COLLECT controls whether the lock request or lock release should be performed
directly or whether it should first be written to the local lock container [Page 212]. This parameter
can have the following values:

• Initial value: The lock request or lock release is sent directly to the lock server.

• X : The lock request or lock release is placed in the local lock container. The lock
requests and lock releases collected in this lock container can then be sent to the lock
server at a later time as a group by calling the function module FLUSH_ENQUEUE.

Behavior for Lock Conflicts (ENQUEUE only)
The ENQUEUE function module also has the parameter _WAIT. This parameter determines the
lock behavior when there is a lock conflict.

You have the following options:

• Initial value: If a lock attempt fails because there is a competing lock, the exception
FOREIGN_LOCK is triggered.

• X : If a lock attempt fails because there is a competing lock, the lock attempt is repeated
after waiting for a certain time. The exception FOREIGN_LOCK is triggered only if a
certain time limit has elapsed since the first lock attempt. The waiting time and the time
limit are defined by profile parameters.

Controlling Deletion of the Lock Entry (DEQUEUE only)
The DEQUEUE function module also has the parameter _SYNCHRON.

If X is passed, the DEQUEUE function waits until the entry has been removed from the lock
table. Otherwise it is deleted asynchronously, that is, if the lock table of the system is read
directly after the lock is removed, the entry in the lock table may still exist.

Exceptions of the ENQUEUE Function Module

• FOREIGN_LOCK: A competing lock already exists. You can find out the name of the
user holding the lock by looking at system variable SY-MSGV1.

• SYSTEM_FAILURE: This exception is triggered when the lock server reports that a
problem occurred while setting the lock. In this case, the lock could not be set.

If the exceptions are not processed by the calling program itself, appropriate messages are
issued for all exceptions.

BC - ABAP Dictionary SAP AG

Function Modules for Lock Requests

208 December 1999

Reference Fields for RFC-Enabled Lock Objects
The type of an RFC-enabled function module must be completely defined. The parameters of the
generated function module therefore have the following reference fields for RFC-enabled lock
objects:

Parameters Reference fields

X_<field name> DDENQ_LIKE-XPARFLAG

_WAIT DDENQ_LIKE-WAITFLAG

_SCOPE DDENQ_LIKE-SCOPE

_SYNCHRON DDENQ_LIKE-SYNCHRON

See also:
Example for Lock Objects [Page 216]

 SAP AG BC - ABAP Dictionary

Conditions Required of Foreign Keys

December 1999 209

Conditions Required of Foreign Keys
All the tables that can be included in a lock object must be linked with foreign keys [Page 19].
There are a number of restrictions to the valid relationships.

1. The foreign key relationships of the tables of the lock object must form a tree. The tables
are the nodes of the tree. The links of the tree mean is the check table of.

2. The foreign key fields must be key fields of the foreign key table.

3. The foreign key relationships defined between the base tables of the lock objects may
not have any field that is checked against more than one other field. A field therefore
may not occur twice as foreign key field in a relationship and may not be checked against
two different fields in two different foreign key relationships.

4. You must keep one restriction in mind for multi-structured foreign keys [Page 29]. If a
field is assigned to a field that is outside the check table, the table containing this field
must be in a sub-tree that contains the check table of this foreign key relationship as a
root.

These conditions are always satisfied if the key of the foreign key table is an extension of the key
of the check table.

Conditions 2, 3 and 4 are meaningless if the particular foreign key field was excluded from the
assignment to the key fields of the check table by marking it as generic or setting it to a constant
[Page 22]. This is also true for multi-structured foreign keys if the foreign key field refers to a
table that is not contained in the lock object.

BC - ABAP Dictionary SAP AG

Lock Mechanism

210 December 1999

Lock Mechanism
Sperrtabelle [Ext.]

Kollisionen von Sperren [Ext.]

Das R/3 Sperrkonzept [Ext.]

You can synchronize access by several programs to the same data with a logical lock
mechanism. This lock mechanism fulfills two main functions:

• A program can tell other programs which data records it is just reading or changing.

• A program can prevent itself from reading data that is just being changed by another
program.

The data records of a table to be locked are defined by a logical condition. When a lock is set,
this logical condition is entered in a lock table. This entry is retained until it is removed by the
program or the program comes to an end. All the locks set by a program are thus removed at the
end of the program.

Program

Enqueue
server

Lock table

Enter
lock

Access
data

Requests
lock

Set lock

Database

1

2

3

4

When accessing data records, the records just being edited by other programs can be identified
by the entry in the lock table. Such an entry for the lock must define a number of fully specified
key fields, that is either a value is passed for the key field or this field is locked generically.

To set locks, a lock object [Page 202] must be defined in the ABAP Dictionary. When this lock
object is activated, two function modules (see Function Modules for Lock Requests [Page 206])
are generated with the names ENQUEUE_<lockobjectname> and
DEQUEUE_<lockobjectname>.

If data records are to be locked, you must call function module ENQUEUE_<lockobjectname>.
The values of the key fields that specify the records to be locked are passed for all the tables
contained in the lock object when the function module is called. There is a generic lock if a value
is not passed for all the key fields. The function module writes the appropriate lock entry (see
Example for Lock Objects [Page 216]). If another program also requests a lock, it will be
accepted or rejected depending on the lock mode [Page 205] (see Lock Collisions). The program
can then react to this situation.

Locked data records can be unlocked by calling function module DEQUEUE_<lockobjectname>.
The key values and the lock mode used to set the lock must be passed to the function module.

 SAP AG BC - ABAP Dictionary

Lock Mechanism

December 1999 211

ABAP program
…
call function 'ENQUEUE_E_TAB'
 exporting
 mode_tab = 'E'
 K1 = '1'
 K2 = ' '
 …

Table TAB
K1 K2 D1 D2

Key fields

Lock table

TAB E 1 *
…

…

All records of
TAB with
K1=‘1’ are
locked

This lock procedure requires that all programs involved cooperate. Inconsistencies can occur if a
program reads or changes data without having previously locked it. When a lock is set, the data
records are only protected against changes by another program if this program also requests a
lock before accessing the data.

Instead of writing lock requests or lock releases directly in the lock table, it is also possible to
collect them first in a local lock container [Page 212]. The collected locks can be sent at a later
time as a group. A parameter of the relevant function module controls whether a lock request or
lock release is sent directly.

You can find further information about the lock concept and how lock management works in the
documentation The R/3 Lock Concept.

BC - ABAP Dictionary SAP AG

Local Lock Containers

212 December 1999

Local Lock Containers
Lock requests and lock releases can be collected in a local lock container and sent together by
calling the function module FLUSH_ENQUEUE.

This has two advantages over sending the lock requests directly:

• Communications with the lock server are minimized if the lock requests are sent as a
group.

• The collected lock requests are handled as a group, which means that they are only
written to the lock table if this is possible for all the individual requests.

The local lock container is emptied if all the collected lock requests can be executed; otherwise
its contents remain unchanged.

Local lock container
collects all submitted
lock requests

Lock server

ABAP program

CALL FUNCTION ‘ENQUEUE_…’.

CALL FUNCTION ‘ENQUEUE_…’.

CALL FUNCTION ‘DEQUEUE_…’.

CALL FUNCTION ‘FLUSH_ENQUEUE’.

...

...

...

...

...

DEQUEUE ...
ENQUEUE ...
ENQUEUE ...
...

...

FLUSH_ENQUEUE sends all
collected lock requests to the
lock server

The local lock container can be emptied by calling the function module RESET_ENQUEUE. All
the collected lock requests or lock releases are deleted. The local lock container is automatically
emptied when the corresponding internal session is ended.

Lock requests and lock releases are managed together in the local lock container. When the
collected requests are sent, the lock requests are sent first. The lock releases are sent once all
the requested locks have been assigned.

The lock requests and lock releases are not adjusted in the local lock container. The order in
which the individual requests are written in the local lock container is of no importance.

 SAP AG BC - ABAP Dictionary

Creating Lock Objects

December 1999 213

Creating Lock Objects
Procedure

1. Select object type Lock object in the initial screen of the ABAP Dictionary, enter an object
name and choose Create. The name of a lock object should begin with an E
(Enqueue).

 The maintenance screen for lock objects is displayed.

2. Enter an explanatory short text in the field Short text.

 You can then use the short text to find the lock object at a later time, for example with the
R/3 Repository Information System.

3. Enter the name of the primary table of the lock object.

 All other tables in the lock object must be linked with the primary table using foreign keys
[Page 19]. There are also some restrictions on the valid foreign key relationships [Page
209].

4. Select the lock mode [Page 205] of the primary table in the field below it.

 The lock mode is used as the default value for the corresponding parameters of the
function modules [Page 206] generated from the lock object.

5. Choose Add if you want to lock records in more than one table with the lock object.

 A list of all the tables linked with the primary table using valid foreign keys [Page 209] is
displayed. Select the appropriate table. The lock mode of the primary table is copied as
lock mode. You can change this setting as required, for example you can assign the lock
mode separately for each table.

 Similarly, you can add a table linked with the secondary table just added with foreign
keys. To do this, place the cursor on the name of the secondary table and choose Add.

 If no lock mode is assigned to a table, no lock is set for the entries in this table when
the generated function modules are called. You should not assign a lock mode if a
secondary table was only used to define a path between the primary table and
another secondary table with foreign keys.

6. Save your entries.

 A dialog box appears in which you have to assign the lock object a development class.

7. You can (optionally) exclude lock parameters (see lock objects [Page 202]) from the
function module generation on the Lock parameter tab page. This makes sense for
example if you always want to lock a parameter generically.

 To do this, simply deselect the Weight flag for the parameter. The parameter is not taken
into consideration in the generated function modules. This parameter is then always
locked generically.

 The name of a lock parameter is usually the name of the corresponding table field. If two
fields with the same name are used as lock parameters in the lock object from different
tables, you must choose a new name for one of the fields in field Lock parameter.

BC - ABAP Dictionary SAP AG

Creating Lock Objects

214 December 1999

8. You can define whether the function modules generated from the lock object should be
RFC-enabled on the Attributes tab page.

 If you set the Allow RFC flag, the generated function modules can be called from within
another system with Remote Function Call.

 If you permit Remote Function Calls for an existing lock object, you must ensure that the
generated function modules are called from within an ABAP program with parameters
appropriate for the type. You should therefore check all programs that use the
associated function modules before activating the lock object with the new option.

9. Choose .

Result
When you activate the lock object, the two function modules ENQUEUE_<lockobjectname> and
DEQUEUE_<lockobjectname> are generated from its definition to set and release locks.

You can find information about the activation flow in the activation log, which you can display with
Utilities →→→→ Activation log. If errors occurred during activation, the activation log is displayed
immediately.

 SAP AG BC - ABAP Dictionary

Deleting Lock Objects

December 1999 215

Deleting Lock Objects
Prerequisites
When you delete a lock object, the function modules [Page 206] generated when you activated
the lock object are automatically deleted as well. These generated function modules might still be
in use in programs or classes.

Therefore, before deleting a lock object, find all programs or classes that contain these function
modules and remove the calls to the function modules.

Procedure
1. In the initial screen of the ABAP Dictionary, select object type Lock object and enter the

lock object name.

 Choose to find all the programs or classes that are still using the lock object. Remove
the lock module calls in the objects you found.

2. Choose .

 A dialog box appears in which you must confirm the deletion request. If the function
modules belonging to the lock object are still in use in programs or classes, a
corresponding warning appears. In this case you must adjust the programs or classes
affected before deleting the lock object.

3. Confirm the deletion request.

Result
The lock object is deleted together with the function modules generated from this lock object.

BC - ABAP Dictionary SAP AG

Example for Lock Objects

216 December 1999

Example for Lock Objects
When booking flights (see Flight Model [Page 295]) it is important to prevent flights from being
overbooked. For this reason, you have to lock the particular flight as well as all the bookings
existing for this flight during processing. You can do this with lock object E_BOOKING.

The flights are recorded in table SFLIGHT and the bookings for the flights in table SBOOK. The
two tables are linked with a foreign key. Lock object E_BOOKING must therefore contain table
SFLIGHT as primary table and table SBOOK as further table.

Foreign key table SBOOK

MANDT CARRID CONNID FLDATE BOOKID CUSTOMID ...

Check table SFLIGHT

MANDT CARRID CONNID FLDATE ...

Primary key

Primary key

Foreign key assignment

The lock argument of table SFLIGHT thus contains the fields MANDT, CARRID, CONNID, and
FLDATE. The lock argument of table SBOOK thus contains the fields MANDT, CARRID,
CONNID, FLDATE, BOOKID and CUSTOMID.

Select exclusive lock mode, that is the locked data can only be displayed and edited by one user.

When the lock object is activated, the following function modules are generated from its
definition:

• ENQUEUE_ E_BOOKING (set locks)

• ENQUEUE_ E_BOOKING (release locks)

These function modules can now be linked to ABAP programs.

The following example shows how function module ENQUEUE_ E_BOOKING is called.

 SAP AG BC - ABAP Dictionary

Example for Lock Objects

December 1999 217

CALL FUNCTION 'ENQUEUE_E_BOOKING'
exporting

mode_sflight = 'E'
mode_sbook = 'E'
mandt = sy-mandt
carrid = 'LH '
connid = 400
fldate = '19981129'
bookid = 0
customid = 0
x_carrid = ' '
x_connid = ' '
x_fldate = ' '
x_bookid = ' '
x_customid = ' '
_scope = '2'
_wait = ’X'
_collect = ' '

exceptions
foreign_lock = 1
system_failure = 2
others = 3.

Lock modes

Lock parameters

Lock behavior when
copying initial value

Pass lock to update program
Behavior in conflict situations
Lock container

With this call, flight LH 400 on Nov. 29,1998 is exclusively (lock mode E) locked in table
SFLIGHT together with all the bookings entered in table SBOOK for this flight (since the initial
value 0 is transferred for BOOKID and CUSTOMID). The lock is sent to the update program
(_SCOPE = ‘2’). If there is a lock conflict, another attempt is made to set the lock after a certain
time (_WAIT = ‘X’).

The set locks can be removed by calling the function module DEQUEUE_E_BOOKING as
follows:

BC - ABAP Dictionary SAP AG

Example for Lock Objects

218 December 1999

CALL FUNCTION 'DEQUEUE_E_BOOKING'
exporting

mode_sflight = 'E'
mode_sbook = 'E'
mandt = sy-mandt
carrid = 'LH'
connid = 400
fldate = ’19981129'
bookid = 0
customid = 0
x_carrid = ' '
x_connid = ' '
x_fldate = ' '
x_bookid = ' '
x_customid = ' '
_scope = '3'
_synchron = ' '

_collect = ' '.

Lock modes

Lock parameters

Lock behavior when
copying initial value

Pass lock to update program

Lock container
Synchronous deletion of lock entry

The existing exclusive lock entries for flight LH 400 are deleted in table SFLIGHT and the
bookings for this flight are deleted in table SBOOK. The request to delete the lock entries is
passed on to the update program (_SCOPE = ‘3’).

See also:
Function Modules for Lock Requests [Page 206]

 SAP AG BC - ABAP Dictionary

Adjusting Database Structures

December 1999 219

Adjusting Database Structures
To enable ABAP programs to access database tables correctly, the runtime object of a table
[Page 232] must correspond to the structure of the table in the database. If the table is changed
in the ABAP Dictionary, you must ensure that the database structure of the table is adjusted to
the change in the ABAP Dictionary during activation (when the runtime object is rewritten).

Database

Active version

Revised version

Field 1 Field 2 Field 3

Field 2 Field 3Field 1 Field 4Field 2 Field 3Field 1

New field must be
added in the DB at
activation

Active version of
table exists in the DB

The database structure does not need to be changed for certain changes in the ABAP Dictionary.
For example, the database table does not need to be adjusted to a change in the field sequence
(except for key fields) in the ABAP Dictionary, since the field sequence in the ABAP Dictionary
does not have to correspond to the field sequence in the database. In this case, the changed
structure is simply activated in the ABAP Dictionary and the database structure remains
unchanged.

The database structure of a table can be adjusted to its changed ABAP Dictionary definition in
three ways:

• By deleting and recreating the database table The table is deleted in the database. The
revised version of the table is then activated in the ABAP Dictionary and created again in
the database. Data in the table is lost during this process.

• By changing the database catalog (ALTER TABLE) Only the definition of the table is
changed in the database. Data in the table is retained. The indexes on the table might
have to be rebuilt.

• By converting the table (see Conversion Process [Page 221]). The database table is
renamed and serves as a temporary buffer for the data. The revised version of the table
is activated in the ABAP Dictionary and created in the database. The data is reloaded

BC - ABAP Dictionary SAP AG

Adjusting Database Structures

220 December 1999

from the temporary buffer to the new database table (with MOVE-CORRESPONDING)
and the indexes on the table are built.

The procedure actually used by the system in a particular case depends on the following:

• type of structural change

• database system used

• whether data already exists in the table

If the table does not contain any data, the existing table is deleted in the database and recreated.
If there is data in the table, the system tries to change the structure using ALTER TABLE. If the
database system used cannot execute the structural change with ALTER TABLE, the table is
converted.

Conversion is usually the most resource-intensive method of adjusting structures. But structural
changes involving changes to the database catalog can also result in costly internal data
reorganizations in some database systems. For details on the processes occurring in the
database for structural changes with ALTER TABLE, refer to the documentation of your database
system.

Normally you should not adjust the database structure during production. At least all
the applications that access the table should be deactivated during the structural
adjustment. Since the table data is not consistent during the structural adjustment (in
particular during conversion), programs could behave incorrectly when they access
this data.

See also:
Conversion Problems [Page 226]

 SAP AG BC - ABAP Dictionary

Conversion Process

December 1999 221

Conversion Process
The following example shows the steps necessary for a conversion

Initial Situation
Table TAB was changed in the ABAP Dictionary. At this time the length of a field (Field 3) was
reduced from 60 to 30 places. The ABAP Dictionary therefore contains an active version (where
the field has a length of 60 places) and a revised version (where the field only has a length of 30
places) of the table.

The active version of the table is created in the database, that is Field 3 currently has 60 places
in the database. Two secondary indexes that were also created in the database are defined in
the ABAP Dictionary for the table. The table already contains data.

Reducing the length of a field results in a table conversion. The table is converted in a series of 7
steps.

Step 1: Set Lock
The table is locked against further structural changes. This lock mechanism prevents a new
structural change from being made before the conversion has finished correctly. If the conversion
terminates after executing Step 2 and before completing Step 4, another structural change could
result in a data loss (for example by attempting another conversion).

Step 2: Rename Table
The table is renamed in the database. All indexes on the table are deleted. The name of the new
table consists of the prefix QCM and the table name. The name of the temporary table for table
TAB is thus QCMTAB.

BC - ABAP Dictionary SAP AG

Conversion Process

222 December 1999

QCMTAB

000100
001200
003000

Rename TAB to
QCMTAB

Delete indexes

Field 1
NUMC, 6

Field 2
CHAR, 8

Field 3
CHAR, 60

1111A00
0222B10
0030B20

Text1...
Text2 ...
Text3 ...

TAB is locked

TAB_______1

TAB_______A

Field 1
NUMC, 6

Field 2
CHAR, 8

Field 3
CHAR, 60

000100
001200
003000

1111A00
0222B10
0030B20

Text1...
Text2 ...
Text3 ...

22

Active version of TAB

Field 2
CHAR, 8

Field 3
CHAR, 60

Field 1
NUMC,6

Revised version of TAB

Field 2
CHAR, 8

Field 1
NUMC,6

Field 3
CHAR, 30

TAB locked 11

TAB

000100
001200
003000

22

Step 3: Activating Tables
The revised version of the table is activated in the ABAP Dictionary. The table is created in the
database with its new structure and primary index. The structure of the database table thus
corresponds to the structure of the table in the ABAP Dictionary after this step. The database
table does not, however, contain any data.

A database lock is also set for the table to be converted. During the conversion, it is not possible
to write to the table to be converted from within application programs.

 SAP AG BC - ABAP Dictionary

Conversion Process

December 1999 223

Activate in the
ABAP Dictionary

Field 2
CHAR, 8

Field 1
NUMC, 6

Field 2
CHAR, 8

Field 3
CHAR, 60

000100
001200
003000

1111A00
0222B10
0030B20

Text1...
Text2 ...
Text3 ...

QCMTAB TAB

Field 1
NUMC, 6

Field 3
CHAR, 30

33

TAB locked
Active version of TAB

Field 2
CHAR, 8

Field 3
CHAR, 60

Field 1
NUMC,6

Revised version of TAB

Field 2
CHAR, 8

Field 1
NUMC,6

Field 3
CHAR, 30

33

TAB created again in the DB

Step 4: Reload Data
The data is reloaded from the temporary table (QCM table) to the new table (with the ABAP
command MOVE-CORRESPONDING). After this step, the data is present in the original table
and the temporary table. You can find information about how existing entries are handled in a
field when the field type changes in the ABAP documentation about the MOVE-
CORRESPONDING statement.

Since the data is present in both the original table and the temporary table during the conversion,
more space is required when the conversion is performed. Before converting large tables, you
should therefore check whether there is enough space in the tablespace concerned.

When you copy data from the temporary table to the original table, a database commit is stored
after 16 MB. The conversion process therefore needs 16 MB of resources in the rollback
segment.

BC - ABAP Dictionary SAP AG

Conversion Process

224 December 1999

Data is loaded back into TAB

TAB

Field 1
NUMC, 6

Field 2
CHAR, 8

Field 3
CHAR, 30

000100
001200
003000

1111A00
0222B10
0030B20

Text1...
Text2 ...
Text3 ...

Field 1
NUMC, 6

Field 2
CHAR, 8

Field 3
CHAR, 60

000100
001200
003000

1111A00
0222B10
0030B20

Text1...
Text2 ...
Text3 ...

44

QCMTAB TAB

Active version of TAB

Field 2
CHAR, 8

Field 3
CHAR, 30

Field 1
NUMC,6

TAB locked

When the length of a field is reduced, the extra places are truncated when the field is reloaded.
When the length of a key is reduced and there are several records whose new key cannot be
distinguished, only one of these records can be reloaded. In general it is not possible to
determine in advance which record this will be. In such a case, you should clean up the data of
the table before conversion.

The table data is only consistent again once Step 4 has been completed. For this
reason, programs must not access the table while the conversion is running.
Otherwise a program could behave incorrectly when reading the table since some of
the records were not yet copied back from the temporary table. For this reason
conversions may not be running during production. At least all the applications
that use the table to be converted must be deactivated.

Step 5: Create New Secondary Indexes for the Table
The secondary indexes on the table defined in the ABAP Dictionary are newly created in the
database.

Step 6: Delete the QCM Table
The data in the temporary table (QCM table) is no longer required at the end of the conversion.
The temporary table is therefore deleted.

Step 7: Remove the Lock
The lock set at the beginning of the conversion is removed.

 SAP AG BC - ABAP Dictionary

Conversion Process

December 1999 225

Remove lock 77

Delete temporary table

Field 1
NUMC, 6

Field 2
CHAR, 8

Field 3
CHAR, 60

000100
001200
003000

1111A00
0222B10
0030B20

Text1...
Text2 ...
Text3 ...

QCMTAB

66 Field 1
NUMC, 6

Field 2
CHAR, 8

Field 3
CHAR, 30

000100
001200
003000

1111A00
0222B10
0030B20

Text1...
Text2 ...
Text3 ...

TAB_______1

TAB_______A

TAB

Create
indexes

55

Active version of TAB

Field 2
CHAR, 8

Field 1
NUMC,6

Field 3
CHAR, 30

TAB locked

If the conversion terminates, the table stays locked is a reset log is written. Each successful step
of the conversion is recorded in this reset log. The restart log is deleted together with the lock
when the conversion has been completed. If the conversion terminates (see Conversion
Problems [Page 226]), you can find the place where the conversion terminated in the reset log
(last step to be executed).

You must clean up terminated conversions! Programs that access tables might otherwise not
execute correctly. You must find out why the conversion terminated (for example overflow of the
corresponding tablespace) and correct it. You must then continue the terminated conversion (see
Continuing Terminated Conversions [Page 228]).

The conversion process described is valid only for transparent tables. For pooled
and cluster tables [Page 256] , a database table with the name QCM<table_name>,
corresponding to the structure of the pooled/cluster table, is created and the data is
copied to this table. Then the data is deleted from the physical table pool/table
cluster. Finally, the data is copied from the QCM table back to the physical table
pool/table cluster according to the new table definition.

See also:
Conversion Problems [Page 226]

Finding Terminated Conversions [Page 229]

BC - ABAP Dictionary SAP AG

Conversion Problems

226 December 1999

Conversion Problems
Some of the problems that occur occasionally during conversions are listed here. See also
Conversion Process [Page 221].

Termination due to Tablespace Overflow
Since the data is present in both the original table and the temporary table (QCM table) during
the conversion, more space is required when the conversion is performed. Before converting
large tables, you should therefore check whether there is enough space in the tablespace
concerned.

If there is a tablespace overflow when data is reloaded from the temporary table into the original
table, the conversion terminates at this point. If this happens, you must extend the tablespace
and resume the conversion in the database utility with Continue adjustment (see Continuing
Terminated Conversions [Page 228]). The system then continues the conversion at the point at
which it terminated.

Deletion of a Client Field
If the client field is removed from a client-specific table, it may no longer be possible to
distinguish the new key of records from different clients.

If deleting a client field resulted in records having the same key, only one of these records can be
reloaded into the table. Which record this is depends on the order in which the records are
reloaded to the table. You therefore cannot be sure that the reloaded records only come from
one client. In such a case, you should clean up the table before conversion.

Data Loss when Keys are Shortened
If a table key is shortened (for example, by removing or shortening the field length of key fields),
the new key of existing table records can no longer be distinguished. When data is reloaded from
the temporary table, only one of these records can be reloaded into the table (since the database
does not allow duplicate records).

It is not possible to say in advance which of the records can be reloaded. If there are particular
records you want to reload, you must clean up the table before the conversion!

Type Conversion not Possible
During a conversion, the data is copied from the temporary table back to the database table
using the ABAP command MOVE-CORRESPONDING. A type can only be changed during a
conversion if this can be executed with MOVE-CORRESPONDING. If a field type cannot be
changed using MOVE-CORRESPONDING, the conversion terminates when the data is reloaded
into the original table.

If the conversion terminates because a particular type change is not supported, you must restore
the old state before the conversion.

To do this, you need to delete the database table in the first step with database means and
rename the QCM table to its original name. In the second step, you have to remove the lock in
the database utility with Unlock table. In the third step you must reconstruct the runtime object for
the table using the database utility (see Editing Database Tables and Indexes [Page 242]) and
return the table definition in the ABAP Dictionary to the state it had before the conversion. The
last step is to activate the table in the ABAP Dictionary.

 SAP AG BC - ABAP Dictionary

Conversion Problems

December 1999 227

Note that problems occurring during type conversions depend on the contents of the field
concerned.

If the accuracy of a DECIMAL field (the number of places before the period) is
reduced and there are entries in the field in which all positions before the period are
used, a termination occurs when the records are reloaded into the table. If there are
no such entries, the records can be reloaded.

Termination during Conversion of Pooled or Cluster Tables
When a pooled or cluster table is converted (see Pooled and Cluster Tables [Page 256]), the
QCM table is created in the database as a transparent table and the data from the pooled or
cluster table is copied to it. There is an upper limit for the number of fields in a database table
depending on the database system used.

It is therefore not possible to convert pooled and cluster tables if the number of fields in the
pooled or cluster table exceeds the maximum number of fields possible in a database table.

See also:
Continuing Terminated Conversions [Page 228]

Finding Terminated Conversions [Page 229]

The Database Utility [Page 240]

BC - ABAP Dictionary SAP AG

Continuing Terminated Conversions

228 December 1999

Continuing Terminated Conversions
Prerequisites
If a conversion terminates, the lock entry for the table set in the first step is retained (see
Conversion Process [Page 221]). The table therefore cannot be edited with the ABAP Dictionary
maintenance tools (Transaction SE11).

If a table conversion terminates, you must correct it. Applications that access this table might not
otherwise be able to read any data and therefore malfunction or fail to run.

Procedure
1. In the initial screen of the ABAP Dictionary, choose Utilities → Database utility

(Transaction SE14).

The initial screen for the database utility appears.

2. Select object type Tables, enter the table name and choose Edit.

You will go to the maintenance screen for database tables.

3. Choose Analyze adjustment.

The next screen lists the conversion steps that were processed correctly. It also shows
the status of the tables involved in the conversion (table with old structure, QCM table
and table with new structure). It can also be used to display the existing syslog entries or
short dumps.

4. Choose Object log.

You can usually find out the exact cause of the termination from the object log. If the
object log does not provide any information about the error, you have to analyze the
system log or the short dumps.

5. Correct the errors found in the object log or syslog or in the short dumps (see Conversion
Problems [Page 226]).

The conversion can usually only be continued once the error causing the termination has
been corrected.

6. Go back to the previous maintenance screen and continue the conversion there with
Continue adjustment.

Result
The system now tries to continue the conversion from the termination point.

Besides Continue adjustment, there is also the option Unlock table. This option only
deletes the lock entry that exists for the table. Never choose Unlock table for a
terminated conversion if the data only exists in the temporary table, that is the
conversion terminated after Step 2 was completed and before Step 4 was
completed.

 SAP AG BC - ABAP Dictionary

Finding Terminated Conversions

December 1999 229

Finding Terminated Conversions
Procedure

1. In the initial screen of the ABAP Dictionary, choose Utilities → Database utility
(Transaction SE14).

The initial screen of the database utility [Page 240] appears.

2. Choose DB requests → Terminated.

The terminated conversions in the system are listed. You can find the table name in the
first column of the list.

3. Double click on the corresponding line to go to the maintenance screen of the database
utility for the particular table.

You can analyze the reason for the termination there and continue the terminated
conversion. See Continuing Terminated Conversions [Page 228].

If a table is locked due to a terminated conversion, this must be corrected.
Applications that access this table might not otherwise be able to read any data and
therefore malfunction or fail to run.

BC - ABAP Dictionary SAP AG

Activation

230 December 1999

Activation
When tables, types (data elements, structures, table types) and views are activated, they are
placed at the disposal of the runtime environment in the form of runtime objects. These runtime
objects contain the information about the object in a form that is optimal for access by ABAP
programs and screens. The runtime objects are buffered so that ABAP programs and screens
can access the information relevant to them quickly.

The information about a table is divided amongst domains, data elements, field
definitions, and the table definitions in the ABAP Dictionary. The runtime object of the
table contains this information in an optimized form.

Table Information
about table

Field information

Runtime object
of table

Field 2 Field 3Field 1

Data
element 1

Data
element 1

Domain 1Domain 1

ABAP
Interpreter

Data
element 2

Data
element 2

Data
element 3

Data
element 3

Domain 2Domain 2 Domain 3Domain 3

ABAP programs and screens get the information they require about ABAP Dictionary objects
from the runtime objects. Changes to ABAP Dictionary objects are determined by comparing the
time stamps (see Runtime Objects [Page 232]). Changes to ABAP Dictionary objects therefore
become effective in all system components when the objects are activated.

When an object is activated, all the objects dependent on it are also reactivated.

After changing a domain, for example changing the data type or the length, all tables
in which a field refers to this domain must be reactivated. This ensures that all these
tables are adjusted to the changed technical field information.

 SAP AG BC - ABAP Dictionary

Activation

December 1999 231

Table 5Table 4Table 3Table 2Table 1

Data element 1Data element 1

Domain Domain Domain

Dependent
data elements

Dependent
tables

Data element 2Data element 2 Data element 3Data element 3

Activating an object can therefore affect numerous dependent objects. Prior to activating a
modified object, you should therefore find out what the effect of this action will be. You can
display all the objects that are dependent on an object with the Where-used list in the
maintenance screen of the object.

You can also activate a large number of objects simultaneously using the mass activation
program [Page 233].

If a long runtime is expected in an activation because of a large number of dependent objects (for
example, if a domain that is used in many tables is to be activated), you should choose Activating
Objects in the Background [Page 234] for the object.

BC - ABAP Dictionary SAP AG

Runtime Objects

232 December 1999

Runtime Objects
Tables, views and types (data elements, structures and table types) have runtime objects that
contain the information about the object that is relevant for ABAP programs or screens. The
runtime object (nametab) is generated the first time an object is activated and subsequently
adjusted to the most recent version of the object each time it is activated thereafter. The runtime
objects are buffered so that ABAP programs and screens can access the information relevant to
them quickly.

Time stamps are used to ensure that ABAP programs and screens always access the most up-
to-date information. When an object is activated in the ABAP Dictionary, the time stamp of the
runtime object and the time stamp of all programs and screens that use this object are adjusted.
However, the time stamp of dependent programs and screens is only adjusted if there was a
change relevant for programs or screens during activation.

The next time the program or screen is called, the time stamps can be compared to determine
whether the program or screen can be executed directly or must be regenerated. This avoids
unnecessary generating, and several consecutive changes to an object can be made in a single
generating step.

Activate an ABAP
Dictionary object

 that is used

Call program

No

Yes

TS source later
than TS load

Execute

Generate

Increase time
stamp of source

Program source
Time stamp source

Generated program

Time stamp load

In the maintenance screen of a table, view or type (data element, structure, table type),
you can display the corresponding runtime object with Utilities → Runtime object →
Display. Choose for explanations about the displayed information.

 SAP AG BC - ABAP Dictionary

Mass Activation

December 1999 233

Mass Activation
If you want to activate a large set of objects simultaneously, for example, after importing data,
you can use mass activation with the program RADMASG0. This program is called the mass
activation program in the following text.

The mass activation program is automatically called when a transport request is imported into a
system. The mass activation program must get a list of ABAP Dictionary objects. All objects in
the list are then activated in one action.

The mass activation program has two advantages over activating objects one at a time:

• If dependent tables are affected by changes to different domains or data elements, they
only have to be reactivated once.

• Related objects, for example, a domain and its associated value table, can be activated
together. If you are activating objects individually, however, you need to activate each of
the objects separately and in the correct sequence. For example, before activating a
table, you must activate all domains and data elements which are referred to by the table
fields.

You can pass the ABAP Dictionary objects to be activated to the mass activation program as
follows:

• Transport request: All the Dictionary objects contained in the transport request are
activated.

• External table: The external table must be a pooled table from the ATAB pool and must
have the same structure as table TACOB. You can also define table TACOB itself. All the
objects entered in this table are activated (see Activating in the Background [Page 234]).

• Direct objects: The objects to be activated can also be entered directly with an input
template when the mass activation program is called.

You must call the mass activation program from Reporting (SE38). The mass activation program
has several input parameters. For an explanation of them and possible entries, use the F1 and
F4 help.

BC - ABAP Dictionary SAP AG

Activating Objects in the Background

234 December 1999

Activating Objects in the Background
Prerequisites
It is particularly important to activate objects in the background if the activation of a large number
of objects is likely to result in long runtimes. In this case you should select a start time that
ensures that the objects are activated at a time when the system is not so busy.

Procedure
1. Choose System →→→→ Services →→→→ Table maintenance → Extended table maintenance.

 The initial screen of Extended Table Maintenance appears.

2. Enter table name TACOB and choose Maintain.

 Specify the object to be activated in the next screen with the object type and object
name.

3. Enter the object types and object names.

 There is an input help for the Otyp field that displays the possible object types.

4. Save your entries and exit Extended table maintenance.

With the mass activation program [Page 233], now schedule a background job for
activating the entries in table TACOB (call Report RADMASG0).

 SAP AG BC - ABAP Dictionary

Data Types in the ABAP Dictionary

December 1999 235

Data Types in the ABAP Dictionary
The data type in the ABAP Dictionary is the user’s view on the data, that is, the data format at the
user interface. This data format depends on the database system used. When a table is defined
in the ABAP Dictionary, the data types defined in the ABAP Dictionary are copied to the data
types of the database system used.

If an ABAP Dictionary object (data element, structure, table type, table, view) is used in an ABAP
program, the Dictionary data types of the object fields are converted to the corresponding ABAP
data types.

CLNT CARRID ...CONNID

Table definition in the ABAP Dictionary

S_CONN_ID
Data element
Data type NUMC
Length 4

SPFLI

Field CONNID with DB
type VARCHAR2 (for
ORACLE) and length 4

ABAP program

CLNT CARRID CONNID ...

TYPES CONN TYPE S_CONN_ID.

Creates type CONN
with ABAP type N
and length 4

Table SPFLI

Note that some data types have a predefined length and set templates for output.

Existing Data Types
ACCP: Posting period. The length is set to 6 places for this data type. The format is YYYYMM. In
input and output, a point is inserted between the year and month, so the template of this data
type has the form ‘____.__’.

CHAR: Character string. Fields of type CHAR may have a maximum length of only 255 in tables.
If longer character fields are to be used in tables, you must choose data type LCHR. There are
no restrictions on the length of such fields in structures.

CLNT: Client. Client fields always have three places.

CUKY: Currency key. Fields of this type are referenced by fields of type CURR. The length is set
to 5 places for this data type.

CURR: Currency field. Equivalent to an amount field DEC. A field of this type must refer to a field
of type CUKY (reference field). The maximum length for this data type is 31 places.

BC - ABAP Dictionary SAP AG

Data Types in the ABAP Dictionary

236 December 1999

DATS: Date. The length is set to 8 places for this data type. The output template can be defined
with the user profile.

DEC: Counter or amount field with decimal point, sign, and commas separating thousands. A
DEC field has a maximum length of 31 places.

FLTP: Floating point number. The length (including decimal places) is set to 16 places for this
data type.

INT1: 1-byte integer between 0 and 255. The length of this data type is set to 3 places.

INT2: 2-byte integer between -32767 and 32767. Fields of this type should only be used for
length fields. These long fields are positioned immediately in front of a long field (type LCHR,
LRAW). With INSERT or UPDATE on the long field, the database interface enters the length
which was actually used in the length field. The length is set to 5 places for this data type.

INT4: 4-byte integer between -2177483647 and 2177483647. The length is set to 10 places for
this data type.

LANG: Language key. Has its own field format for special functions. This data type always has
length 1. The language key is displayed at the user interface with 2 places, but is only stored with
1 place in the database. The conversion exit ISOLA converts the display at the user interface for
the database and vice versa. This conversion exit is automatically allocated to a domain with
data type LANG at activation.

LCHR: Character string of arbitrary length, but with a minimum of 256 characters. Fields of this
type must be located at the end of transparent tables and must be preceded by a length field of
type INT2. If there is an INSERT or UPDATE in ABAP programs, this length field must be filled
with the length actually required.

LRAW: Uninterpreted byte string of arbitrary length, but with a minimum length of 256. Fields of
this type must be located at the end of transparent tables and must be preceded by a length field
of type INT2. If there is an INSERT or UPDATE in ABAP programs, this length field must be filled
with the length actually required.

NUMC: Long character field in which only numbers can be entered. The length of this field is
limited to a maximum of 255 places.

PREC: Accuracy of a QUAN field. The length is set to 2 places for this data type.

QUAN: Quantity. Equivalent to an amount field DEC. A field of this type must always refer to a
units field with UNIT format (reference field). The maximum length for this data type is 31 places.

RAW: Uninterpreted sequence of bytes. Fields of type RAW may have only a maximum length of
255 in tables. If longer raw fields are required in tables, you should select data type LRAW.

RAWSTRING: Uninterpreted byte string of variable length This type can only be used in types
(data elements, structures, table types) and domains. It cannot be used in database tables. In
ABAP, this type is implemented as a reference to a storage area of variable size.

STRING: Character string with variable length This type can only be used in types (data
elements, structures, table types) and domains. It cannot be used in database tables. In ABAP,
this type is implemented as a reference to a storage area of variable size.

TIMS: Time. The length is set to 6 places for this data type. The format is hhmmss. The template
for input and output has the form ‘__.__.__’.

UNIT: Units key. Fields of this type are referenced by fields of type QUAN. The length of this data
type is set to 2 or 3 places.

 SAP AG BC - ABAP Dictionary

Data Types in the ABAP Dictionary

December 1999 237

VARC: Character field of variable length. Creation of new fields of this data type is not supported
as of Release 3.0. However, existing fields with this data type can still be used.

When using the numeric data types CURR, DEC, FLPT, INT2, INT4 and QUAN, you
can choose whether or not a sign should be output on screens.

With the data types CURR, DEC and QUAN, commas separating thousands and
decimal points are set by the system. The output length (number of places plus the
number of necessary editing characters such as commas separating thousands and
decimal points) is therefore greater than the specified length.

The system omits editing characters if the output length specified in the domain
maintenance is too small.

See also:
Mapping of the ABAP Data Types [Page 238]

BC - ABAP Dictionary SAP AG

Mapping of the ABAP Data Types

238 December 1999

Mapping of the ABAP Data Types
The ABAP processor uses ABAP data types in the work areas for data.

Possible ABAP data types:

C: Character

D: Date, format YYYYMMDD

F: Floating point number in DOUBLE PRECISION (8 bytes)

I: Integer

N: Numeric character string of arbitrary length

P: Amount or counter field (packed; implementation depends on hardware platform)

S: Time stamp YYYYMMDDHHMMSS

T: Time of day HHMMSS

V: Character string of variable length, length is given in the first two bytes

X: Hexadecimal (binary) storage

STRING: Character string of variable length

XSTRING: Uninterpreted byte string of variable length

If a data element or a field of an ABAP Dictionary object (structure, table type, table, view) is
used in an ABAP program, the Dictionary data type is converted to the corresponding ABAP data
type.

Mapping of the ABAP Dictionary and ABAP Processor Data
Types

ABAP Dictionary type ABAP type

ACCP N(6)

CHAR n C(n)

CLNT C(3)

CUKY C(5)

CURR n,m P((n+1)/2) DECIMAL m

DEC n,m P((n+1)/2) DECIMAL m

DATS D(8)

FLTP F(8)

INT1 X(1)

INT2 X(2)

INT4 X(4)

LANG C(1)

 SAP AG BC - ABAP Dictionary

Mapping of the ABAP Data Types

December 1999 239

NUMC n N(n)

PREC X(2)

QUAN n,m P((n+1)/2) DECIMAL m

RAW n X(n)

TIMS T(6)

UNIT C(n)

VARC n C(n)

LRAW X(n)

LCHR C(n)

STRING STRING

RAWSTRING XSTRING

The characters used in the table mean:

n: number of places of the field in the ABAP Dictionary

m: number of decimal places of the field in the ABAP Dictionary

BC - ABAP Dictionary SAP AG

The Database Utility

240 December 1999

The Database Utility
The database utility is the interface between the ABAP Dictionary and the relational database
underlying the R/3 System. The database utility allows you to edit (create, delete and adjust to
changes to their definition in the ABAP Dictionary) database objects derived from objects of the
ABAP Dictionary.

...T3T2 T1 Tn

T1
T2

T3
Tn

ABAP Dictionary

DB UTILITYDB UTILITY

Database

Editing Database Objects
You can call the database utility from the initial screen of the ABAP Dictionary with Utilities →→→→
Database utility (Transaction SE14). The initial screen for the database utility appears.

You can use the database utility to edit all the database objects that are generated from objects
of the ABAP Dictionary. These are database tables that are generated from transparent tables or
physical table pools or table clusters, indexes, database views and matchcode pooled tables or
matchcode views.

Since different functions are required for different object types, a separate maintenance screen is
displayed for each object type. You can go to the corresponding maintenance screen by entering
the object name and selecting the object type in the initial screen of the database utility. You go
directly to this screen from the maintenance screen of the object in the ABAP Dictionary with
Utilities → Database utility.

If you want to use the database utility, you need authorization for authorization object
S_DDIC_OBJ, e. g. S_DDIC_ALL.

You can find information about the functions provided in:

 SAP AG BC - ABAP Dictionary

The Database Utility

December 1999 241

• Editing Tables and Indexes in the Database [Page 242]

• Editing Views in the Database [Page 244]

• Editing Matchcodes in the Database [Page 245]

• Editing Table Pools and Table Clusters in the Database [Page 247]

Analyzing and Continuing Terminated Conversions
If a conversion [Page 221] terminates, you can find the reason using the database utility. After
correcting the error you can continue the conversion with the database utility. See:

• Conversion Problems [Page 226]

• Continuing Terminated Conversions [Page 228]

• Finding Terminated Conversions [Page 229]

Administration of Requests for Database Modifications
The database utility provides a number of options for administering and monitoring requests for
database modifications. You can perform these functions directly in the initial screen of the
database utility.

You can:

• Schedule jobs for mass processing [Page 253]

• Display requests for mass processing [Page 251]

• Display logs for mass processing [Page 254]

• Display temporary tables without restart logs [Page 255]

See also:
Adjusting Database Structures [Page 219]

Activation [Page 230]

BC - ABAP Dictionary SAP AG

Editing Tables and Indexes in the Database

242 December 1999

Editing Tables and Indexes in the Database
Basic Functions
The functions Create database table, Delete database table and Activate and adjust database
are provided for transparent tables. You can execute such a function by selecting the processing
type [Page 248] and pressing the corresponding button.

• Create database table: The table is created in the database with its active version and
the primary index. Active secondary indexes are also created in the database if this was
not explicitly excluded when the index was defined (see Creating Secondary Indexes
[Page 77]).

• Delete database table The table and all its indexes are deleted from the database.

• Activate and adjust database The revised version of the table is activated in the
database table is adjusted [Page 219] to this modified table definition. You can select
Keep data or Delete data. For Delete data, the table is deleted in the database and
created again with the new definition. Data in the table is lost. With Keep data, there is
an attempt to perform an adjustment with an ALTER TABLE. If this is not possible, a
table conversion [Page 221] is triggered.

Since pooled and cluster tables [Page 256] are not separate tables in the database,
the functions Create database table and Delete database table are not applicable for
these table categories. The Delete data function is offered instead. It deletes the
table data from the corresponding physical table pool or table cluster.

Functions for Indexes
You go to the maintenance screen for indexes with Goto → Indexes. A list of all the table
indexes that exist in the ABAP Dictionary is displayed. Select the required index by double-
clicking. The following functions are offered in the next screen:

• Create database index: Create a secondary index or the primary index of a transparent
table in the database.

• Delete database index: Delete a secondary index of a transparent table in the
database. The primary index of a transparent table created in the database cannot be
deleted as long as the table still exists in the database.

• Activate and adjust database The index is deleted from the database. The revised
version of the index is activated. The index is then created and built again in the
database.

Other Functions
The database utility also offers a number of check and repair functions for tables.

• Maintain storage parameters: Storage parameters [Page 249] that influence the
database settings (such as extent sizes) for the table can be maintained for transparent
tables. You can display the corresponding maintenance screen with Storage parameters.

 SAP AG BC - ABAP Dictionary

Editing Tables and Indexes in the Database

December 1999 243

• Check consistency: You can compare the table definition in the database with the
runtime object of the table [Page 232] with Extras →→→→ Database object →→→→ Check. The
indexes on the table in the ABAP Dictionary are compared with the indexes on the
database. You can compare the runtime object of the table with the information entered
in the ABAP Dictionary maintenance screen with Extras →→→→ Runtime object →→→→ Check.
Both definitions are displayed. The differences found are highlighted. In both cases you
can switch between a delta (only differences) or full (all information) display of the check
results.

• Check the Existence of Data: With Table →→→→ Data exists? you can check if the table
contains data. Data is selected for all clients. This function is of use for example to check
whether a table is empty prior to a conversion. You can display the data in the logon
client with Table → Table contents.

• Display the Runtime Object and Database Table: You can list the structure of the
table in the database and the indexes defined for the table with Extras → Database
object → Display. With Extras → Runtime object → Display you can display the runtime
object of the table. You can get more information about interpreting the displayed data
with the button.

• Force conversion: You can trigger a table conversion [Page 221] with Extras →→→→ Force
conversion. This function is of use for example if only the storage parameters [Page 249]
or technical settings [Page 30] of the table were modified, but the table structure was not
changed. Some of the modified settings can only take effect in the database once the
table has been converted. A table conversion cannot be triggered with the Activate and
adjust database function in this case because the table structure has not changed.

• Reconstruct: You can create a suitable runtime object [Page 232] for the database table
with Table → Reconstruct. This runtime object only contains the information about the
table that is available in the database, such as the field name and data types. It does not
contain other information about the table that only exists in the ABAP Dictionary, such as
specifications for buffering. Only user DDIC has the authorization to execute this
function. Only use this function to temporarily correct inconsistencies (database status
and runtime object differ) and be sure to adjust the table in the usual way in the ABAP
Dictionary and activate it there at a later time.

BC - ABAP Dictionary SAP AG

Editing Views in the Database

244 December 1999

Editing Views in the Database
Basic Functions
The database utility provides the functions Create database view, Delete database view and
Activate and adjust database for editing database views [Page 106]. You can execute such a
function by choosing a processing type [Page 248] and pressing the corresponding button.

• Create database view: A database view defined in the ABAP Dictionary is physically
created in the database.

• Delete database view: The database view is deleted from the database.

• Activate and adjust database: The view is deleted from the database. The revised version
of the view is activated and this version of it is created again in the database.

Other Functions
The database utility also offers a number of check functions for database views:

• Check consistency: You can compare the view definition in the database with the runtime
object [Page 232] of the view with Extras →→→→ Database object →→→→ Check. You can compare
the runtime object of the view with the information given in the ABAP Dictionary maintenance
screen with Extras →→→→ Runtime object →→→→ Check. Both definitions are displayed. The
differences found are highlighted. In both cases you can choose either a delta (only
differences) or full (all information) display of the check results.

• Display the view definition in the database: You can list the definition of the view in the
database with Extras → Database object → Display.

• Display the Runtime Object: You can list the information in the runtime object for the view
with Extras → Runtime object → Display. You can get more information about interpreting
the displayed data with the button.

See also:
Views [Page 95]

 SAP AG BC - ABAP Dictionary

Editing Matchcodes in the Database

December 1999 245

Editing Matchcodes in the Database
Functions for Matchcode Objects
The database utility provides the functions Create database table and Delete database table for
editing matchcode objects.

You can execute such a function by choosing a processing type [Page 248] and then pressing
the corresponding button.

• Create database table: The physical matchcode pool M_<name of MC object> is
created in the database.

• Delete database table The physical matchcode pool M_<name of MC object> is deleted
from the database.

Functions for Matchcode IDs
If you wish to edit individual matchcode IDs, you can display the matchcode IDs defined for the
matchcode object with Goto → Matchcode ID. A list of all matchcode IDs for the matchcode
object is displayed from which you can select the IDs you require.

This function distinguishes between transparent and physically implemented matchcode IDs.

Functions for Physically Implemented Matchcode IDs
The following functions are supported for physically implemented matchcode IDs (update types
A, S, P):

• Build data: The data for the matchcode ID is built in the matchcode pool.

• Delete data: The data for the matchcode ID is deleted from the matchcode pool.

• Activate and adjust database You have the following options for physically
implemented matchcode IDs:

With data construction: The data for the matchcode ID is deleted from the matchcode pool.
The matchcode ID is activated in the ABAP Dictionary. The data for the matchcode ID is
then rebuilt with the new structure.

Without data construction: The data for the matchcode ID is deleted from the matchcode
pool. The matchcode ID is activated in the ABAP Dictionary. The matchcode pooled
table therefore contains no data for the matchcode ID.

Functions for Transparent Matchcode IDs
The following functions are supported for transparent matchcode Ids (update type I):

• Create database view: The view M_<MC object><ID> for the matchcode search is
created in the database. This function is normally executed when a transparent
matchcode ID is activated in the ABAP Dictionary.

• Delete database view The view M_<MC object><ID> created for the matchcode search
is deleted from the database.

• Activate and adjust database The view M_<MC object><ID> created for the
matchcode search is deleted from the database. The matchcode ID is activated in the

BC - ABAP Dictionary SAP AG

Editing Matchcodes in the Database

246 December 1999

ABAP Dictionary and the view is created in the database again with the new active
version of the matchcode ID.

 SAP AG BC - ABAP Dictionary

Editing Pools and Clusters in the Database

December 1999 247

Editing Pools and Clusters in the Database
Basic Functions
The database utility provides the functions Create database table, and Delete database table for
editing pooled and cluster tables [Page 256]. You can execute such a function by choosing a
processing type [Page 248] and pressing the corresponding button.

• Create database table: Create the physical pool or cluster in the database.

• Delete database table Delete the physical pool or cluster from the database.

Other Functions
The database utility also offers a number of check functions for pooled and cluster tables:

• Maintain storage parameters: Storage parameters [Page 249] for pooled and cluster tables
that affect the database settings of the table (such as extent sizes) can be maintained with
Goto → Storage parameters.

• Check consistency: You can compare the definition of the pool or cluster in the database
with the runtime object [Page 232] of the pool or cluster with Extras →→→→ Database object →→→→
Check. You can compare the runtime object of the pool or cluster with the information
entered in the ABAP Dictionary maintenance screen with Extras →→→→ Runtime object →→→→ Check.
In both cases you can choose either a delta (only differences) or full (all information) display
of the check results.

• Display the runtime object and define it in the database You can list the structure of the
pool or cluster in the database with Extras → Database object → Display You can list the
information contained in the runtime object with Extras → Runtime object →=Display. You can
get more information about interpreting the displayed data with the button.

See also:
Pooled and Cluster Tables [Page 256]

BC - ABAP Dictionary SAP AG

Processing Types

248 December 1999

Processing Types
The database utility can be used to make modifications to database objects with various
processing types.

Direct
The required database modifications are carried out immediately.

This processing type is not suitable for converting large tables. First of all, the conversion places
a great load on the system. Secondly, the conversion can terminate due to a runtime restriction.
You should therefore choose the processing type Background when converting large tables.

Background
A background job is scheduled for the required database modifications.

You can specify the time at which background processing is to begin. If you wish, you can
choose to start background processing immediately. The advantage of selecting this processing
type rather than Direct is that there is no danger of the operation terminating as the result of a
runtime restriction.

Entering for mass processing
If you choose this processing type, entries are created with the corresponding function in a
system table (TBATG). The requests collected in this table can then be processed in the
background at fixed times (generally overnight). The background process for editing the requests
must be scheduled explicitly as a job (see Scheduling Jobs for Mass Processing [Page 253]).

The objects already scheduled for mass processing can be displayed from the initial screen of
the database utility with DB requests → Mass processing. The interpretation of the displayed list
is described in Displaying Requests for Mass Processing [Page 251].

The background program writes messages in a log file. You can display these day logs starting
with the initial screen of the database utility with Extras → Logs. The interpretation of the
displayed list is described in Displaying Requests for Mass Processing [Page 254].

 SAP AG BC - ABAP Dictionary

Storage Parameters

December 1999 249

Storage Parameters
Storage parameters can be set for database tables (transparent tables, table pools, table
clusters). These parameters affect the way in which tables are handled in the database. For
example, the storage parameter defines the tablespace in which the table should be created in
the database and the size to be selected for the table extents.

The existing storage parameters and the particular settings that are allowed depend on the
database system in use. To find out which parameters can be set in your database system,
please consult the system documentation for your database system.

Which Storage Parameters are Effective for a Table?
When a table is activated for the first time, the storage parameters for the table are computed
from the technical settings of the table (if there are no technical settings, the default values of the
database system are used) and the table is created in the database with these storage
parameters.

If the table is deleted from the database and created again at a later time (for example due to a
table conversion [Page 221]), the storage parameters to be used are defined in a fixed hierarchy.

If there are user-defined storage parameters, these are used. If there are no user-defined storage
parameters, the valid parameters used previously in the database are used. If there are no such
parameters either (for example if the table was previously a pooled or cluster table that was
converted to a transparent table by conversion), the storage parameters are computed from the
technical settings. If there are no technical settings for the table either, the default values of the
database system are used.

If the technical settings of a table that already exists in the database are changed
and activated, the valid storage parameters for the table in the database are not
changed. In this case you have to change the valid storage parameters manually
with the database utility.

Displaying and Maintaining the Storage Parameters
In the database utility, go to the table maintenance screen. You can display the storage
parameters that are currently valid for the table and its indexes with Storage parameters.

The parameters displayed here depend on the database system used. You can find information
about the meaning of the displayed parameters by selecting the parameter and pressing F1.

You can change some storage parameters directly. Choose . You can now enter values for the
changeable parameters. Make your changes and choose Apply. The changed settings are
now active in the database.

For example, if you change the extent size directly, the next table extent [Page 32] is
created with the new size. This change has no effect on existing extents.

The tablespace in which the table lies cannot be changed directly. Such a change
requires that you delete the table in the old tablespace and create a new one in the
new tablespace.

BC - ABAP Dictionary SAP AG

Storage Parameters

250 December 1999

With Techn. setting you can display which storage parameters would be computed from the
current values of the technical settings.

You can also explicitly define which storage parameters should be used next time the table or an
index of the table is created. For example, this can be necessary if you changed the technical
settings of the table and want to make sure that these changed settings are used when the table
is converted [Page 221].

Proceed as follows:

1. Choose For new creation.

2. You can create a template for the parameters in the next screen with . You can decide
here if you want to use the storage parameters currently valid in the database, the
storage parameters computed from the technical settings, the default values of the
database system or the parameters of another table as template.

3. Have the system create the template. You can now maintain all the parameters, so that
you can enter the required values.

4. Then save your entries.

If you create the table again in the database (e.g. during a conversion), the parameters you
entered will be used.

See also:
Technical Settings [Page 30]

 SAP AG BC - ABAP Dictionary

Displaying Requests for Mass Processing

December 1999 251

Displaying Requests for Mass Processing
Procedure for Displaying the Requests
Choose DB Requests →→→→ Mass processing in the initial screen of the database utility to obtain a
list of all entries for mass processing that you yourself scheduled and which have not yet been
processed. Only requests for which no job has yet been scheduled for processing and those
which are still running or have terminated are displayed here.

You can obtain the list of all scheduled and not yet processed requests in the system by
choosing All requests. You can return to the display of the requests you scheduled with Own
requests.

You can obtain a list of all entries for mass processing which arose from an import of objects
from another system and which have not yet been processed successfully with DB Requests →
Created with import.

Information in the Lists
These lists contain the following information:

• Object: Object type.

• Object name: Name of the ABAP Dictionary object.

• ID: If a matchcode ID is being processed, its name is given here. If an index is being
processed, its name is given here.

• Function: Function to be carried out for the object in the database. Possible entries are
CRE (create), DEL (delete), DNA (delete the object in the database and delete the
runtime object), MDF (delete, create again) and CNV (convert).

• User: User who entered the request in TBATG.

• Job status: Status of the job scheduled for the conversion.

• Start date, Start time: Date and time when the job should be started.

• Job name: Name of the scheduled job. This name always has the form TBATG-<Date
job is scheduled>.

• Job count: Identifier with which several jobs scheduled on the same day can be
distinguished.

• Date of creation: Date when the request was entered in TBATG.

• Order: If several requests exist for an object, the sequence is given here.

Scheduling jobs

A corresponding job must be scheduled so that the requests for mass processing
can be processed. Requests for which no job has yet been entered in the field Job
name are therefore not processed.

BC - ABAP Dictionary SAP AG

Displaying Requests for Mass Processing

252 December 1999

You can schedule a job for the displayed request directly by selecting the required entries in the
first column and choosing Schedule selected. A dialog box then appears in which you can specify
the time when the job is to be started.

Deleting Scheduled Requests
You can delete scheduled requests by selecting the corresponding line and choosing Marked.

 SAP AG BC - ABAP Dictionary

Scheduling Jobs for Mass Processing

December 1999 253

Scheduling Jobs for Mass Processing
Prerequisites
If you choose the processing type Enter for mass processing, the action is not executed
immediately. Instead, entries with the corresponding function are generated in a system table
(TBATG). The requests collected in this table are processed in the background at fixed times.
The background process must be scheduled explicitly as a job.

Procedure
1. You can schedule the job in the initial screen of the database utility (Transaction SE14).

To do this choose Extras → Schedule job.

 A dialog box is displayed in which you can schedule the job. You can enter the date and
time when the job starts here.

2. The job can also be started depending on a certain event, certain operating mode or
when another job has ended.

 To do this, choose the relevant pushbuttons and make the necessary entries.

3. If you want to schedule the job periodically, you must set the flag Execute job
periodically.

 In this case you also need to choose the period values. Choose Period values. The
possible values are displayed in a dialog box. Select the value you require and choose
Save.

4. Choose Save to store the start time.

 A dialog box appears in which you can enter further restrictions for the requests to be
processed by the job. The job then only processes the TABTG entries that satisfy the
specified restrictions. The F1 help for the input fields tells you what the individual
parameters of this screen mean.

5. Choose Schedule → Set in job.

The job is scheduled. The job processes all requests scheduled for mass processing
(TBATG entries) that match the selection conditions.

See also:
Processing Types [Page 248]

BC - ABAP Dictionary SAP AG

Displaying Logs for Mass Processing

254 December 1999

Displaying Logs for Mass Processing
Procedure
Select Extras →→→→ Logs in the initial screen of the database utility to obtain the logs of all the
requests for mass processing that have been processed in the background.

Information in the List
The list contains the following information:

• Log name: Name of the background job.

• Severity: Maximum error severity (‘ ’ = no error, W = warning, E = error) for a processing
step within the job.

• Length: Number of lines in the mass processing log.

• User: Name of the user who scheduled the background job.

• Date, Time: Date and time when the job was started.

Actions in the List
You can perform the following operations from within this list:

• Display a log: Select the log name and choose .

• Change the log name: You can assign the log another name with Edit →→→→ Rename or
you can copy the log to a log with another name with Edit →→→→ Copy.

• Delete a log: Select the log to be deleted and choose .

 SAP AG BC - ABAP Dictionary

Displaying Temporary Tables without Restart Logs

December 1999 255

Displaying Temporary Tables without Restart Logs
Procedure
With Extras → Invalid temp. table you can display the temporary tables in your system (QCM
tables) for which there is no restart log. Tables for which there is a restart log because the
conversion terminated are not displayed here.

These temporary tables are created during the conversion (see Conversion Process [Page 221]).
In such a conversion the data from the table is saved in a temporary table. After the table has
been created in the database with its new structure, the data is reloaded to the original table. If
the conversion runs without any errors, the temporary table is no longer required.

As of Release 3.0, the temporary table is deleted after the conversion has been completed
successfully. Prior to Release 3.0 these tables were retained even after the conversion had been
completed successfully. Such tables can therefore be deleted.

When deleting the temporary tables displayed, you should make sure that no
terminated conversion was unlocked by mistake. In this case the existing restart log
would be deleted. If the conversion terminated at a time when the data was present
only in the temporary table, there is a danger of data loss.

If you are not sure whether this is the case, you should check whether the original
table exists in the database and contains the expected volume of data before you
delete the temporary table.

BC - ABAP Dictionary SAP AG

Pooled and Cluster Tables

256 December 1999

Pooled and Cluster Tables
Table pools (pools) and table clusters (clusters) are special table types in the ABAP Dictionary.
The data from several different tables can be stored together in a table pool or table cluster.
Tables assigned to a table pool or table cluster are referred to as pooled tables or cluster tables.

A table pool or table cluster should be used exclusively for storing internal control information
(screen sequences, program parameters, temporary data, continuous texts such as
documentation). All data of commercial relevance is stored exclusively in transparent tables!

Table Pools
A table in the database in which all records from the pooled tables assigned to the table pool are
stored corresponds to a table pool.

The definition of a pool consists essentially of two key fields (Tabname and Varkey) and a long
argument field (Vardata). A pool has the following structure:

Field Data type Meaning

Tabname CHAR(10) Name of pooled table

Varkey CHAR (n) Contains the entries from all key fields of the pooled table
record as a string, max. length for n is 110

Dataln INT2(5) Length of the string in Vardata

Vardata RAW (n) Contains the entries from all data fields of the pooled table
record as a string, max. length n depends on the database
system used

If a pooled table record is saved, it is stored in the table pool assigned. The name of the pooled
table is written to the field Tabname. The contents of all key fields of the pooled table are written
as a string to field Varkey and the contents of all data fields as a string to field Vardata. The
length of the string stored in Vardata is entered in field Dataln by the database interface.

 SAP AG BC - ABAP Dictionary

Pooled and Cluster Tables

December 1999 257

Pooled table TABA

Pooled table TABB

A B C

D E F

Key

Key

Data

Data

Table pool in the database

Tabname Varkey DataLn Vardata

TABA

TABB

A B C

D E F

Due to the structure of a table pool, there are certain restrictions on the pooled tables assigned to
it. The name of a pooled table may not exceed 10 characters. Since Varkey is a character field,
all key fields of a pooled table must have character data types (for example, CHAR, NUMC,
CLNT). The total length of all key fields or all data fields of a pooled table must not exceed the
length of the Varkey or Vardata field of the assigned pool.

Table Clusters
Several logical data records from different cluster tables can be stored together in one physical
record in a table cluster.

A cluster key consists of a series of freely definable key fields and a field (Pageno) for
distinguishing continuation records. A cluster also contains a long field (Vardata) that contains
the contents of the data fields of the cluster tables for this key. If the data does not fit into the long
field, continuation records are created. Control information on the structure of the data string is
still written at the beginning of the Vardata field. A table cluster has the following structure:

Field Data type Meaning

CLKEY1 * First key field

CLKEY2 * Second key field

...

CLKEYn * nth key field

Pageno INT2(5) Number of the continuation record

Timestamp CHAR(14) Time stamps

BC - ABAP Dictionary SAP AG

Pooled and Cluster Tables

258 December 1999

Pagelg INT2(5) Length of the string in Vardata

Vardata RAW (n) Contains the entries from the data fields of the assigned
cluster tables as a string, max. length n depends on the
database system used

The records of all cluster tables with the same key are stored under one key in the assigned table
cluster. The values of the key fields are stored in the corresponding key fields of the table cluster.
The values of all data fields of the assigned cluster tables are written as a string to the Vardata
field of the table cluster. Besides the actual data values, the data string contains information on
the structure of the data and which table it comes from. If the string exceeds the maximum length
of the Vardata field, a continuation record is written with the same key values. The continuation
records for a key are distinguished by their value in field Pageno. The actual length of the string
in the Vardata field is stored in the Pagelg field by the database interface.

Cluster table TABA

Cluster table TABB

A B C

A B E

Key

Key

Data

Data

Table cluster in the database

Key Pageno Vardata

A B G

D

F

H

A B

A B

0

1

C DD E

F G H

You need the structural information stored in the ABAP Dictionary to read the data from a pooled
table or cluster table correctly. These tables can therefore only be processed using Open SQL
with the cluster interface, and not with Native SQL directly in the database.

See also:
Creating Table Pools/Table Clusters [Page 259]

Deleting Table Pools/Table Clusters [Page 260]

Creating Pooled Tables/Cluster Tables [Page 261]

Changing Pooled Tables/Cluster Tables [Page 262]

 SAP AG BC - ABAP Dictionary

Creating Table Pools/Table Clusters

December 1999 259

Creating Table Pools/Table Clusters
Procedure
1. In the initial screen of the ABAP Dictionary, choose Utilities → Further

Dictionary Objects.

A dialog box appears.

2. Select the object type Table pool/cluster and enter the object name. Choose .

A dialog box appears in which you must specify if it is a table pool or a table cluster.

Select the required object type and choose .

3. The maintenance screen for table pools/clusters appears.

The necessary entries will have been made automatically for the fields for table pools
since a table pool has a fixed structure. You should not change these standard settings if
you can avoid it.

The structure of a table cluster is also mostly fixed. Certain fields are therefore proposed
when the table cluster is created. You can adjust this proposal to your requirements, for
example by inserting further key fields. However, make sure you conform to the structure
necessary for a table cluster.

4. Enter an explanatory text in the field Short text.

If necessary, select the activation type [Page 80] of the table pool/cluster with Utilities →
Activation type.

5. Create documentation about the table pool/cluster with Goto → Documentation.

This documentation should describe what the table pool/cluster is used for. The
documentation is also output when the table pool/cluster is printed.

6. Go to the maintenance screen for the technical settings by choosing Goto →→→→ Technical
settings.

In contrast to the table maintenance screen, you can only define the size category [Page
32] here. All other attributes of the technical settings are preset.

7. Activate the table pool/cluster with .

Result
The table pool/cluster is activated. You can look at the log of the activation with Utilities →
Activation log. If errors occurred during activation, the activation log is automatically displayed.

After the table pool/cluster has been activated, you need to create it in the database. To do this,
use the database utility (Utilities → Database utility).

Once a table pool contains data, it can no longer be changed.

BC - ABAP Dictionary SAP AG

Deleting Table Pools/Table Clusters

260 December 1999

Deleting Table Pools/Table Clusters
Prerequisites
Please note that you cannot delete a table pool or table cluster if it still contains pooled tables or
cluster tables.

Procedure:
1. In the initial screen of the ABAP Dictionary, choose Utilities →→→→ Further Dictionary

Objects.

 A dialog box appears.

2. Select object type Table pool/cluster.

 Enter the name of the table pool or table cluster.

3. Choose .

 You are informed if the table pool or table cluster still contains data. If it does not contain
any data, a dialog box appears in which you are requested to confirm the deletion
request.

 If pooled or cluster tables are still assigned to the table pool or table cluster, you cannot
delete it.

4. Confirm the deletion request.

Result
The pool or cluster is deleted in the ABAP Dictionary and in the database.

 SAP AG BC - ABAP Dictionary

Creating Pooled Tables/Cluster Tables

December 1999 261

Creating Pooled Tables/Cluster Tables
Procedure

1. In the initial screen of the ABAP Dictionary select object type Table, enter a table name
and choose Create.

 The field maintenance screen for the table is displayed. Table type Transparent table is
set as default.

2. Make the necessary entries in the Short description and Delivery class fields on the
Attributes tab page. Then define the fields of the table.

 Proceed as when creating a transparent table [Page 71]. Save your entries.

3. Choose Extras →→→→ Change table category.

 A dialog box appears in which you have to select the table type Pooled table or Cluster
table.

4. Choose Select.

 You return to the field maintenance screen for the table. Field Pool/cluster name is
displayed on the Attributes tab page in addition to the standard fields.

5. Enter the name of the table pool or table cluster [Page 256] to which you want to assign
the pooled table or cluster table in field Pool/cluster name

 Note that the total key length of a pooled table may not exceed the key length of the
associated table pool. The key of a cluster table must correspond to the key of the
associated table cluster.

6. Proceed as when creating a transparent table (see Creating Tables [Page 71]).
Remember that you cannot create indexes for pooled or cluster tables.

All the attributes of the technical settings [Page 30] can be maintained for pooled
tables and cluster tables. Before you can access these attributes, however, you must
convert the table to a transparent table.

BC - ABAP Dictionary SAP AG

Changing Pooled Tables/Cluster Tables

262 December 1999

Changing Pooled Tables/Cluster Tables
Procedure
To change a pooled or cluster table, proceed as described for transparent tables (see Changing
Tables [Page 81]).

Effect of Changes
However, there are certain differences between pooled/cluster tables and transparent tables with
regard to the effect of such changes.

If new fields are appended to a pooled or cluster table, it is not necessary to convert the table.
The new fields are defined automatically as NOT NULL (see Initial Values [Page 86]). Therefore,
when the modified table is activated, the complete table is scanned and the new field is filled with
the initial value. This can take a considerable time in the case of pooled or cluster tables
containing a large number of records.

Unlike for transparent tables, inserting new fields in a pooled or cluster table and making
changes to the field sequence always causes the table to be converted [Page 221].

If a pooled or cluster table is assigned to another physical table pool or table cluster, this results
in the table being converted.

Pooled and cluster tables with more than 250 fields cannot be converted. You may
not make changes to such tables that would require a table conversion (for example,
inserting fields, changing the field sequence, deleting fields). New fields must always
be appended at the end of the table.

 SAP AG BC - ABAP Dictionary

Matchcodes

December 1999 263

Matchcodes

Matchcodes were replaced with search helps [Page 166] starting with Release 4.0.
Use search helps to assign an input help to a field.

Existing matchcodes were automatically converted to search helps. A matchcode
object is hereby converted to a collective search help [Page 172] with the same
name. Each matchcode ID of the matchcode object is converted to an elementary
search help [Page 168] with the same name and assigned to the collective search
help created from the matchcode object.

A matchcode is a means of finding data records stored in the system. The matchcode is defined
in the ABAP Dictionary in two steps:

• You first define the relevant tables and fields for the search in a matchcode object. A
matchcode object describes the set of all possible search paths for a search string.

• You then create one or more matchcode IDs for a matchcode object. A matchcode ID
describes a special search path for a search string. The matchcode ID defines the fields
or field combinations to be used in the search.

A material number must be entered in a screen field. Since the user cannot be
expected to know this number, it must be possible to search for this number using
the attributes of the corresponding material.

Several search paths are possible for this search. For example, you can search for
the material number with the material name, the material class or the material
manufacturer.

The corresponding matchcode object then comprises the fields for the material
number, material name, material class and manufacturer. One matchcode ID
corresponds to each search path. For example, ID A could describe the search for
the material number by manufacturer. This ID only contains the fields for the material
number and manufacturer.

Matchcode Objects
The tables relevant for the search are included in a matchcode object. The table selection is
based on one primary table. Further secondary tables can also be included, which are linked with
the primary table by foreign keys. The fields of the matchcode object can then be selected from
the base tables.

A matchcode object is not stored physically. It only describes a complete logical view on one or
more tables.

Matchcode IDs
Several matchcode IDs can be created for one matchcode object. The matchcode IDs are
derived from the matchcode object by projection (field selection) and selection (definition of a
selection condition).

BC - ABAP Dictionary SAP AG

Matchcodes

264 December 1999

A matchcode ID must be identified within a matchcode object with one letter or digit. This means
that a maximum of 36 matchcode IDs (26 letters and 10 digits) can be defined for each
matchcode object.

Selection conditions can be defined for each matchcode ID. These are used as a filter for the
matchcode to be built. These selection conditions can define restrictions for all the fields from the
base tables of the relevant matchcode ID.

You must also specify an update type [Page 265]. The update type defines how the data should
be accessed and how the matchcode adjusts to data changes in the tables contained in the
matchcode.

See also:
Creating Matchcodes [Page 268]

Changing Matchcodes [Page 285]

 SAP AG BC - ABAP Dictionary

Update Types

December 1999 265

Update Types
The update type of a matchcode ID defines how the matchcode is built and how it is adjusted to
changes in the data records of the base tables. IDs with different update types can be defined for
a matchcode object.

Building Matchcodes
There are two ways to build a matchcode:

Logically
The matchcode data is built temporarily when the matchcode is accessed. In this case it is
implemented with a database view. This is called transparent storage of matchcodes.

Physically
The matchcode data is stored redundantly as a separate table in the system. You must define
here how the data in this redundant table should be adjusted to changes in the base tables of the
matchcode object.

All the physically stored matchcode IDs of a matchcode object are stored in a table pool (called
M_<Matchcode_object>). This matchcode pool is automatically created in the ABAP Dictionary
and in the database when the first physically stored ID of the matchcode object is activated. A
pooled table (called M_<Matchcode_object><Matchcode_ID>) that is assigned to the table pool
of the matchcode object is created in the ABAP Dictionary for each matchcode ID when a pooled
table is activated.

Update Types
Update Type A
The matchcode data is stored redundantly as a separate table in the system. The matchcode
data is only built independently of data changes at certain times using the matchcode utility.
Since it could be quite time-consuming to build the matchcode data, you should do so at times
when the system load is low, for example during the night.

When searching for a matchcode, it might not always be possible to access the most current
data. This inaccuracy is usually acceptable when using the online search help.

Update Type S
The matchcode data is stored redundantly as a separate table in the system. The matchcode
data is adjusted to each modification operation performed on the base tables of the ID with ABAP
Open SQL (INSERT, DELETE or UPDATE).

The matchcode data affected by the table change is therefore updated automatically without this
being explicitly requested by the application. Automatic updating, however, results in a loss of
performance.

Update Type P
The matchcode data is stored redundantly as a separate table in the system. The matchcode
data is updated by the application program itself, so that this application program and other
programs always have access to current matchcode data.

BC - ABAP Dictionary SAP AG

Update Types

266 December 1999

To do this, a function module MC_UPDATE_<matchcode_object_name> is generated when the
matchcode ID is activated. The matchcode data is updated when the application program calls
this function module.

Update Type I
The matchcode data is implemented logically as a database view. Only transparent tables may
be used in transparent matchcodes. When a transparent matchcode ID is activated, a view
definition is automatically created in the ABAP Dictionary. This view definition contains the fields
defined in the matchcode ID (in exactly the same order) and any defined matchcode selection
condition as view selection condition. A corresponding database index should be created in user-
defined matchcode IDs to support view access.

The transparent matchcodes are much more efficient than for example synchronously maintained
matchcodes, especially for modification operations, since there are no extra database accesses,
thus reducing the costs for communications with a remote database server in a client/server
environment. The matchcode selection itself can be compared with the selection behavior of the
physically stored matchcodes if there are suitable indexes in the database.

Update Type K
Classification matchcodes are user-specific search paths that can be accessed with the F4 help
like all other matchcodes. However no matchcode data can be recorded for them (logical
structure). The data is obtained from a function module. This module must be specified in the
matchcode ID definition and is called in the matchcode selection.

 SAP AG BC - ABAP Dictionary

Special Features of Program-Driven Matchcodes

December 1999 267

Special Features of Program-Driven Matchcodes
Program-driven matchcodes (update type P) are stored physically, that is the matchcode data is
stored redundantly as a separate table in the system. The matchcode data is updated by the
application program itself, so that this application program and other programs always have
access to current matchcode data.

To do this, a function module MC_UPDATE_<matchcode_object_name> is generated when the
matchcode ID is activated. The matchcode data is updated when the application program calls
this function module.

Converting a program-driven matchcode to transparent storage therefore requires that you
change the application programs using this function module. You only have to turn the function
module call into a comment line.

Adding tables to a matchcode object that contains a program-driven matchcode ID can lead to
problems. Only one function module exists for all program-driven IDs of the object. This function
module takes its information directly from the matchcode object. Consequently, if you change the
base tables of the object, you also have to change the interface to this function module, even if
the change does not directly affect the program-driven ID.

BC - ABAP Dictionary SAP AG

Creating Matchcodes

268 December 1999

Creating Matchcodes
Procedure
1. You can display the matchcode maintenance screen from the initial screen of the ABAP

Dictionary. Choose Utilities → Further Dictionary objects.

 A dialog box appears.

2. Select the object type Matchcode object and enter a four-place name. Choose Create.

The maintenance screen for matchcode objects appears. All other steps are described
based on this maintenance screen.

To create a matchcode, you must first create a matchcode object and then create one or more
matchcode Ids for this matchcode object.

Procedure for Creating Matchcode Objects
1. Define the attributes of matchcode objects [Page 269]

2. Select the secondary tables of matchcode objects [Page 270]

3. Select the fields of matchcode objects [Page 271]

4. Activate the matchcode objects [Page 272]

Procedure for Creating Matchcode IDs
1. Define the attributes of matchcode IDs [Page 273]

2. Select the secondary tables of matchcode IDs [Page 275]

3. Select the fields of matchcode IDs [Page 276]

4. Define the selection conditions of matchcode IDs [Page 278] (optional)

5. Activate the matchcode IDs [Page 279]

Depending on the selected update type of the matchcode IDs of a matchcode object, you have to
define further structures or carry out certain actions:

• Update types A, S or P: build matchcode data [Page 280]

• Update Type I: create matchcode indexes [Page 282]

• Update type K: Create a function module for a matchcode ID [Page 284]

See also:
Update Types [Page 265]

 SAP AG BC - ABAP Dictionary

Defining Attributes of Matchcode Objects

December 1999 269

Defining Attributes of Matchcode Objects
Procedure
1. Go to the maintenance screen for matchcode objects.

2. Enter an explanatory short text in the field Short text.

3. Choose the primary table of the matchcode object. Enter the name of this table in the field
Primary table.

4. Save your entries.

5. A dialog box appears in which you have to assign a development class to the matchcode
object.

Additional Information
The following additional information is displayed in the screen Maintain Matchcode Object
(Attributes):

Secondary tables
Tables linked to the primary table by foreign keys.

Matchcode pools
The name automatically defined for the table pool (see Pooled and Cluster Tables [Page 256])
belonging to the matchcode object is displayed after you activate the first physically stored ID
(see Update Types [Page 265]) of the matchcode object.

The table pool is automatically defined in the ABAP Dictionary and in the database when the first
physically stored ID of the matchcode object is activated. The name of the table pool contains the
prefix M_ and the name of the matchcode object. The name of the table pool for the matchcode
object TEST would be for example M_TEST.

Next Action when Creating a Matchcode:
Select the secondary tables of matchcode objects [Page 270]

BC - ABAP Dictionary SAP AG

Selecting Secondary Tables of Matchcode Objects

270 December 1999

Selecting Secondary Tables of Matchcode Objects
Procedure
1. In the maintenance screen for the attributes of a matchcode object, choose Goto →→→→ Tables.

 The maintenance screen for the table selection of the matchcode object is displayed. All
the tables already included in the object are listed in the upper part of the screen.

 If secondary tables were already defined, the foreign keys [Page 19] linking the tables
are listed in tabular form in the lower part of the screen. You will find information there on
the referenced tables, dependent tables and check field used.

 You can display the definition for the foreign key by positioning the cursor on the relevant
line and choosing Edit → Foreign key.

2. If you want to include additional secondary tables, position the cursor on a table name
(primary table or secondary table already included) and choose Edit →→→→ Choose sec. tab.

 A list of all the tables linked to the selected table by foreign keys is displayed in a dialog
box.

3. Position the cursor on a table that you want to include as a secondary table and choose
Choose. The table is highlighted. Repeat this for all the tables you want to include in the
matchcode object. Choose Copy.

 You return to the maintenance screen. The selected tables are included as secondary
tables and the appropriate foreign key is displayed.

 You can delete incorrect secondary tables by positioning the cursor on the table and
choosing Edit -> Delete SecTab.

4. Save the table selection when you have included all the tables you require.

Next Action when Creating a Matchcode:
Select the fields of a matchcode object [Page 271]

 SAP AG BC - ABAP Dictionary

Selecting Fields of Matchcode Objects

December 1999 271

Selecting Fields of Matchcode Objects
Procedure
1. In the maintenance screen for the attributes of the matchcode object or the maintenance

screen for the table selection choose Goto →→→→ Fields.

 The maintenance screen for the field selection for matchcode objects is displayed. The
key fields of all the tables that are relevant for the matchcode object are automatically
copied. These fields are indicated by an appropriate entry in the Key column.

2. If you want to include more fields in the matchcode object, position the cursor on the name of
the table you require and choose Edit →→→→ Choose fields.

 The fields of the corresponding table are displayed in a dialog box.

3. You can include a field in the matchcode object by clicking on the corresponding entry and
selecting Choose.

 The entry is highlighted. You can remove fields that were wrongly selected by positioning
the cursor on the field and choosing Delete selection.

4. Press Copy after marking all the required fields.

 The selected fields are included in the matchcode object.

 The order of the fields in the matchcode object is irrelevant. If two fields of different
tables have the same name, a new name must be entered in the column MC field for at
least one field.

5. Link the screen field and the matchcode object field.

 In order to use matchcodes as an online help, there must be a link between a field on the
screen and a matchcode field. This link is established with the search field, which is
normally assigned to the first key field of the primary table.

 In a matchcode selection within the online help, the value of the search field is copied to
the screen. If you want to select another search field, you must simply mark it in the
corresponding column.

6. Save the field selection.

All the fields in matchcodes must have character data types (CHAR, NUMC, ACCP,
CLNT, CUKY, DATS, TIMS, LANG, UNIT).

Next Action when Creating a Matchcode:
Activate the matchcode objects [Page 272]

BC - ABAP Dictionary SAP AG

Activating Matchcode Objects

272 December 1999

Activating Matchcode Objects
Before you can create matchcode IDs, you must activate the matchcode object. In the
maintenance screen for the attributes of a matchcode object choose Matchcode object →→→→
Activate.

Information on the activation process can be found in the activation log. You can display the
activation log with Utilities →→→→ Display log →→→→ Activate. If errors occurred during activation, the
activation log is automatically displayed.

Next Action when Creating a Matchcode:
Create the matchcode IDs [Ext.]

 SAP AG BC - ABAP Dictionary

Defining Attributes of Matchcode IDs

December 1999 273

Defining Attributes of Matchcode IDs
Procedure
1. Goto →→→→ Matchcode IDs.

 A list of all existing IDs for the object is displayed.

2. Choose Create to define a new ID.

 A dialog box appears in which you can enter any alphanumeric character as identifier for
the matchcode ID. The digits 0 to 9 are reserved for customers.

3. Choose Continue.

 The maintenance screen for the attributes of a matchcode ID appears.

4. Enter an explanatory short text in the field Short text.

5. Choose an update type [Page 265] for the Matchcode ID.

 Update type I (transparent ID) is entered as default value. If you want to select another
update type, simply overwrite this entry. However, in general you should create all IDs as
transparent IDs.

6. Save your entries if you do not want to make any of the optional settings described below.

Other Options
System Matchcode
The SAP software uses this matchcode if this indicator is set. The customer may not change it.

Auth. check
If this indicator is set, authorization checks are made, which may be linked to individual
matchcode records. In the matchcode display, a user exit in which an application-specific
authorization check can be programmed is called before a matchcode record which has been
read is output.

The user exit is called CHECK_AUTHORITY_<mcid> and is located in the include MC_<obj>&,
where <obj> is the name of the matchcode object.

Additional Information Depending on the Update Type
Update Types A, S and P (Physical Matchcodes):

• MC pooled table: If the matchcode ID was already activated, the corresponding pooled table
is listed here. The name of the pooled table contains the prefix M_, the name of the
matchcode object and the matchcode ID. The corresponding name is therefore M_TEST1 for
ID 1 of matchcode object TEST.

• Deletion flag: Set this flag if the relevant matchcode records are to be assigned a deletion
flag but are not actually to be physically deleted when a record of a base table is deleted. All
the records flagged in this way are physically deleted at a later time during a mass deletion
process. Records assigned a deletion flag still appear in the matchcode display until the end
of this deletion process.

BC - ABAP Dictionary SAP AG

Defining Attributes of Matchcode IDs

274 December 1999

The deletion flag cannot be set for matchcode IDs of update type P.

Update Type I:

• MC view name: If the matchcode ID has already been activated, the corresponding view
name is listed here. The view name contains the prefix M_, the name of the matchcode
object and the matchcode ID. The corresponding name is therefore M_TEST1 for ID 1 of
matchcode object TEST.

• Table name, Index ID: You can define the table and index ID here for the index you created
to support view selection. These fields have a purely documentary function at present.

Update Type K:

• Function: For matchcode IDs of update type K the search is via a function module that is
triggered when the ID is selected. This entry shows the name of the function module used if
such a module was already created.

Next Action when Creating a Matchcode:
Select the secondary tables of matchcode IDs [Page 275]

 SAP AG BC - ABAP Dictionary

Selecting Secondary Tables of Matchcode IDs

December 1999 275

Selecting Secondary Tables of Matchcode IDs
Procedure
1. In the maintenance screen of the matchcode ID, position the cursor on one of the base tables

of the ID and select Edit →→→→ Choose sec. tables.

 A dialog box appears listing the tables of the matchcode object linked to the table by
foreign keys.

2. Select the secondary tables required in the dialog box. You can remove tables that were
wrongly selected by selecting them again.

 Only transparent tables may be selected for transparent matchcodes (update type I).

 For performance reasons, some restrictions apply to table selection in matchcodes of
update type S (synchronous updating).

 Only key extensions are permitted for synchronous matchcode IDs in dependent tables.
The selected tables must, therefore, be related hierarchically.

Table T2 is dependent on table T1, while a further table T3 is dependent on T2. The
tables are said to have a hierarchical relationship if the key of T2 contains the key of
T1 in its first position and the key of T3 contains the key of T2 in its first position.
Only with this type of relationship can T2 and T3 be included as secondary tables for
primary table T1 for a matchcode to be updated synchronously.

 If two tables T2 and T4 are dependent on a table T1, only one of the tables may be
included in a synchronous matchcode ID in addition to table T1. An exception to this rule
are text tables. If T2 or T4 is a text table [Page 27] of T1, then both can be included in
the matchcode ID.

3. Choose Continue.

 You return to the maintenance screen. The selected secondary tables are included in the
ID.

4. Save the selection of the secondary tables.

Next Action when Creating a Matchcode:
Select fields of a matchcode ID [Page 276]

BC - ABAP Dictionary SAP AG

Selecting Fields of Matchcode IDs

276 December 1999

Selecting Fields of Matchcode IDs
Procedure
1. In the maintenance screen for the attributes of the matchcode ID, choose Goto →→→→ Fields.

 The maintenance screen for the matchcode ID appears.

2. Position the cursor on a table name and choose Edit →→→→ Choose fields.

 The fields of the corresponding table are displayed in a dialog box.

3. You can include a field in the matchcode ID by clicking on the corresponding entry and
choosing Choose. The entry is highlighted. You can remove a wrongly selected field by
positioning the cursor on the field in question and choosing Delete field.

 Press Copy after selecting all the required fields. The selected fields are copied to the
matchcode ID.

 The order of the selection exactly corresponds to the order in which the fields are listed
in the matchcode ID. The order of the fields in the matchcode ID is of paramount
importance for later accessing behavior, for example, in connection with the possible
entries help F4. The fields that are most frequently accessed should be placed at the
start.

4. Save your field selections if you do not wish to make any of the optional settings described
below.

Constraints
For reasons of consistency, matchcode IDs may only contain fields of tables that are linked with
a foreign key. For example it is not possible to include fields from two tables that are only linked
with a third table that is not contained in the matchcode ID. In such a case this linking table must
be included in the matchcode ID with a key field.

The data of a matchcode ID of update types A, S and P are stored in pooled tables. The system
tries to store all the fields of the matchcode ID in the key of the corresponding pooled table. The
key of a pooled table, however, may not be of arbitrary length. It is therefore possible that some
of the fields of the matchcode ID cannot be stored in the key of the pooled table. In order to
ensure that the records of a matchcode ID are unique, however, at least all the key fields of the
matchcode ID (that is all the fields necessary to uniquely identify a matchcode record) must lie
within the first 110 bytes.

The fields of the ID must uniquely identify each record in matchcode IDs of update type S.
However, not all of the key fields of the tables used in the ID need be included. A further
constraint is that the ID must contain at least one key field of a table included in the ID, even if
the remaining fields already uniquely identify each record.

Other Options
Storage
Here you can define how the matchcode records should be saved.

• Lngth, Offs: You can define a field as a sub-field by specifying its offset and length. You have
to define a suitable data element (the type and length of the referenced domain must agree

 SAP AG BC - ABAP Dictionary

Selecting Fields of Matchcode IDs

December 1999 277

with that of the sub-field) in the column Data elem. Key fields may not be sub-fields. No sub-
fields may be defined for transparent matchcode IDs (update type I).

• G/K: This flag defines whether to distinguish uppercase and lowercase notation when
building the matchcode records. If nothing is specified here, the matchcode records are built
and output in uppercase for matchcode IDs of update type [Page 265] A, S or P. The search
is not case-sensitive. This field is irrelevant for matchcode IDs of update type I because no
separate matchcode records are written (search is via a view).

Display
You can influence how the selected matchcode records are output. The following settings are
possible:

• Ln: Line in which a particular field is to appear in the matchcode output. A maximum of three
lines can be output.

• Cl: Column in which a particular field is to appear in the matchcode output. Column + field
length for the matchcode output may not exceed the assumed page width of 80 characters.

• Mod: This flag is selected automatically if you change the entries in columns Ln and Cl.

• Ns: If this flag is set, the corresponding field is not used for matchcode selection. It does not
appear in the field input list for the possible entries help F4 and is not evaluated in the
matchcode search string.

Parameters
Here you define whether values from matchcode records that were selected using the online help
function should be stored in global SAP memory or whether values for the matchcode selection
should be obtained from memory.

• PID: Parameter ID for defining default values for a field in the user master record.

• SP: Select the flag SP if the field value read from the selected matchcode record should be
stored in memory.

• GP: Select the flag GP if the field value for matchcode analysis should be obtained from
memory. The advantage of this method is that the user no longer has to enter a field value
obtained from memory on the screen by hand.

Changing Data Elements
The system assigns the matchcode field the data element of the corresponding table field. You
can change this data element. This may be necessary, for example, if you want to allocate other
documentation to the matchcode field.

Simply overwrite the name of the data element in the field Data elem. The new data element
must refer to a domain with the same data type and the same length as the original data element.

Next Action when Creating a Matchcode (Optional):
Define the selection conditions of a matchcode ID [Page 278]

BC - ABAP Dictionary SAP AG

Defining Selection Conditions of Matchcode IDs

278 December 1999

Defining Selection Conditions of Matchcode IDs
Prerequisites
Once you have defined the structure of a matchcode ID and specified the fields it is to contain,
you can restrict the number of data records found by a matchcode search by specifying a
selection condition. When the matchcode records are built, only those entries satisfying this
condition are included.

Procedure
1. In the field maintenance screen for the matchcode ID, choose Goto →→→→ Selection condition.

 The maintenance screen for the selection conditions of the matchcode ID appears.

2. You can enter a selection condition of the form NOT MC Field Lngth Offs Op Constant
AND/OR in each line.

3. A list of all the possible fields is displayed by choosing Edit →→→→ Choose fields.

 You can choose fields from this list and copy them for use in the definition of the field
conditions by positioning the cursor on the field name and selecting Choose.

4. Save your entries for the selection condition(s).

The entries in the selection conditions are as follows:

• NOT: Entering NOT negates the corresponding line of the selection condition.

• MC field: Name of the matchcode field for which the condition is formulated.

• Lngth, Offs: If the field is defined as a sub-field with entries having been made for offset and
length, the corresponding values are entered here.

• Op.: Comparison operator for the selection condition. The following operators are permitted:
LK (like), GT (greater than), GE (greater than / equal to), NE (not equal to), EQ (equal to), LT
(less than) and LE (less than / equal to).

• Constant: Constant value with which the field value is compared. Text literals enclosed in
apostrophes and numbers are allowed as comparison values.

• AND/OR: Link between two lines of the selection condition. Note that OR takes priority over
AND. The condition <COND1> AND <COND2> OR <COND3> is therefore interpreted as
<COND1> AND (<COND2> OR <COND3>). OR operations are only possible between lines
referring to the same field.

The field conditions need not refer only to the fields belonging to the matchcode ID.
They can be defined for any fields of the matchcode object. You can therefore
include any fields of the matchcode object in the selection condition without using
them in the ID as fields.

Next Action when Creating a Matchcode:
Activate the matchcode IDs [Page 279]

 SAP AG BC - ABAP Dictionary

Activating Matchcode IDs

December 1999 279

Activating Matchcode IDs
You can activate the matchcode ID from the maintenance screen for the attributes of the
matchcode ID with Matchcode ID →→→→ Activate.

The corresponding database view is created on the database during activation for matchcode IDs
with update type I. During activation, there is also a check whether there is a corresponding index
on the database for supporting view selection. If this is not the case, a warning is given.

Information on the activation process can be found in the activation log. You can display the
activation log with Utilities →→→→ Display log →→→→ Activate. If errors or warnings occurring during
activation, the activation log is displayed.

Next Action when Creating a Matchcode:
For IDs of update types A, S, P: build matchcode data [Page 280]

For IDs of update type I: create a matchcode index [Page 282]

For IDs of update type K: create a function module for a matchcode ID [Page 284]

BC - ABAP Dictionary SAP AG

Building Matchcode Data

280 December 1999

Building Matchcode Data
Prerequisites
In physical matchcodes (update types A, S or P), the matchcode data is stored redundantly in
separate tables in the system. You have to build these tables after you have created and
activated the matchcode object and the matchcode IDs. The tables are built and deleted using
the matchcode utility (report SAPMACO). The procedure used to build the tables is the same for
all physical update types (A, S or P).

The matchcode utility operates globally across all clients. A parameter controls whether
matchcodes are to be built or deleted for a specific client or for all clients. The utility also permits
matchcodes to be built for all matchcode objects at one time.

Procedure
1. Choose Utilities →→→→ Matchcode data →→→→ Build in the maintenance screen of the matchcode

object. You can also call report SAPMACO directly.

2. Follow the instructions in the F1 help. It describes how to fill in the input template. Execute
the report.

3. Check whether the matchcode data was built correctly. You can see this in Displaying the
Built Matchcode Data [Page 281].

Transparent matchcode IDs (update type I) and classification matchcode IDs (update
type K) are not stored physically. Therefore, there is no reason to build such IDs with
the matchcode utility.

 SAP AG BC - ABAP Dictionary

Displaying the Built Matchcode Data

December 1999 281

Displaying the Built Matchcode Data
Procedure
1. Go to the maintenance screen for the attributes of the matchcode object.

2. Choose Utilities →→→→ Matchcode data →→→→ Display.

 A dialog box appears in which all the IDs of the matchcode object are listed.

3. Select one of the IDs by clicking on the corresponding line and selecting Choose.

 The dialog box Restrict value ranges appears for you to limit the value range of the
records to be output by entering selection conditions for the fields of the ID.

4. Choose Continue.

All the records which satisfy the specified condition are output.

You can also display the matchcode data of an ID directly from the maintenance
screen of the ID. Select Utilities →→→→ Display MC data. The dialog box Restrict value
ranges appears. Proceed as described above.

BC - ABAP Dictionary SAP AG

Creating Matchcode Indexes

282 December 1999

Creating Matchcode Indexes
When you activate a transparent matchcode ID, a check is made to see whether a suitable
database index exists for this ID. Such an index is generally necessary to support matchcode
selection. If no such index exists, considerable performance problems could result during
matchcode selection.

The system assumes that the first field of the matchcode definition (the first field after the client
field in cross-client matchcodes) is the relevant search field for this matchcode, that is, that the
user limits this field during the matchcode search by entering a selection value. An index is
considered to be suitable if it contains the relevant matchcode search field (possibly after a client
field).

If there is no such suitable database index, a warning is given when the matchcode ID is
activated. Two cases are distinguished here:

• If the matchcode view on the database (taking into consideration the selection condition)
contains fewer than 1000 data records, you need not create an index.

• If the matchcode view on the database contains considerably more than 1000 records, you
should create an index.

The first position of the index for supporting the matchcode selection should contain the fields to
be searched for with equality (client, language, or, more generally, all fields for which the Get
Parameter flag, that is, the GP flag in the screen Maintain Matchcode ID (Fields), is set).

The index should have the following structure:

• client field

• fields for which the Get Parameter flag is set

• field to be found

This index structure, however, does not always ensure that the index is used by the underlying
database system for data selection. The database system optimizer determines which index is
actually used. Therefore, you must ensure that the secondary index you create is better than the
primary index of the corresponding table created by the system.

You can check whether the index you created is used to support the matchcode selection as
follows:

1. In the maintenance screen for the attributes of the matchcode ID, choose Utilities → Explain
plan.

 A dialog box appears in which you can enter a search string for this ID.

2. Choose Continue. The search string is committed.

 The explain plan for the search string is now displayed. The explain plan shows the
structure of the SELECT statement used for the search string and how the SELECT
statement is processed in the database. In particular, it displays the indexes used for
reading the data from the base tables of the matchcode ID.

3. Analyze the explain plan and, if necessary, create indexes for the tables that did not have a
suitable index for the access.

The structure of the explain plan depends on the database system used. Further information
about the explain plan can be found in the documentation on your database system.

 SAP AG BC - ABAP Dictionary

Creating Matchcode Indexes

December 1999 283

BC - ABAP Dictionary SAP AG

Function Modules for Matchcode IDs

284 December 1999

Function Modules for Matchcode IDs
You can search for matchcodes of update type K with the F4 help using a function module that
has to be specified in the matchcode ID definition and that is called in the matchcode selection.
This function module must have the following interface:

CALL FUNCTION fname

EXPORTING MCONAME = mcname "Name of the matchcode object"

SELSTR = 'M.....' "Matchcode entry"

The VALUES table has the Dictionary structure RSMVA with the fields:

FLDID(3) TYPE C = field ID of the field to be transported to the screen

FLDLG(6) TYPE N = length of the field to be transported

VALUE(79) TYPE C = value to be defined

In the current version, only one line of the VALUES table is analyzed after returning from the
function module. Only the search field (at which the matchcode selection was triggered) specified
in the definition of the matchcode object is transported to the screen. The value that is returned
must already have been converted to the external format.

 SAP AG BC - ABAP Dictionary

Changing Matchcodes

December 1999 285

Changing Matchcodes
Procedure
1. You can display the matchcode maintenance screen from the initial screen of the ABAP

Dictionary. Choose Utilities → Further Dictionary objects.

 A dialog box appears.

2. Select the object type Matchcode object and enter a four-place name. Choose Change.

Here you can:

• change the matchcode objects [Page 286]

• change the matchcode IDs [Page 288]

• convert to transparent matchcodes [Page 290]

• determine the effect of conversion on transparent matchcodes [Page 291]

• deactivate the matchcode IDs [Page 292]

• delete the matchcode objects [Page 294]

• delete the matchcode IDs [Page 293]

BC - ABAP Dictionary SAP AG

Changing Matchcode Objects

286 December 1999

Changing Matchcode Objects
This section describes what you should be aware of when changing an existing matchcode
object.

Changing the Primary Table
To change the primary table, simply enter a new table name in the field Primary table.

A warning is issued if you already selected secondary tables or fields. If you confirm
the change to the primary table by pressing ENTER, all dependent objects
(secondary tables and fields) are deleted.

If IDs already exist for the matchcode object, you cannot change the primary table. In this case
you must first delete the existing IDs.

Removing Secondary Tables
To remove a secondary table from the matchcode object, position the cursor on the table and
choose Edit -> Delete SecTab.

Deleting a table from the matchcode object also removes all the tables that are
linked with the primary table via the deleted table.

Including Additional Secondary Tables
If you want to include additional secondary tables, position the cursor on the table name and
choose Edit →→→→ Choose sec. tab. A list is displayed of all tables linked to the selected table with a
foreign key.

Position the cursor on a table that you want to include as a secondary table and choose Choose.
The table is highlighted. Repeat this for all the tables you want to include in the matchcode
object. Choose Copy.

You return to the maintenance screen. The selected tables are included as secondary tables and
the appropriate foreign key is displayed. Save the table selection when you have included all the
tables you require.

Deleting fields
To delete a field, position the cursor on the relevant field and choose Edit →→→→ Delete field. Key
fields cannot be deleted.

Before you delete a field from a matchcode object, you must make sure that this field
is not used in any of the matchcode IDs for this object. Otherwise an error occurs
when you try to activate the matchcode object! You can correct this error by deleting
the relevant field from all the IDs of the matchcode object or by simply including the
field again in the matchcode object.

 SAP AG BC - ABAP Dictionary

Changing Matchcode Objects

December 1999 287

Inserting Fields
To insert a field, position the cursor on a field that was already entered and choose Edit →→→→ Insert
field. A new line is opened directly above the line containing the cursor. You can make the
necessary entries in this line.

Changing the Search Field
In order to use matchcodes as an online help, there must be a link between a field on the screen
and a matchcode field. This link is established with the search field, which is normally assigned to
the first key field of the primary table.

In a matchcode selection within the online help, the value of the search field is copied to the
screen. If you want to select another search field, you must simply mark it in the corresponding
column.

Only one field may be selected as search field!

BC - ABAP Dictionary SAP AG

Changing Matchcode IDs

288 December 1999

Changing Matchcode IDs
This section describes what you should be aware of when changing an existing matchcode ID.

Changing the Update Type
You can change the update type [Page 265] by overwriting the existing entry in the field Update
type. If you wish to convert physically stored matchcode IDs to transparent matchcode IDs, read
the information in Converting to Transparent Matchcodes [Page 290].

You have to delete all dependent objects of the existing ID before changing the
update type. If you change the update type from I to A, for example, you must first
delete the matchcode view created in the database.

Removing Secondary Tables
You can remove a table already selected for the matchcode ID by selecting the relevant table
again.

Position the cursor on the table with which the table to be removed is linked to the primary table.
Choose Edit →→→→ Choose sec.tab. A dialog box appears listing the tables linked with the table via
foreign key. In the dialog box, cancel the selection of the secondary tables to be removed.
Choose Continue. You return to the maintenance screen. The selected secondary tables are
deleted from the ID. Save the selection of the secondary tables.

The fields of this table already included in the matchcode ID are not removed
automatically. They must be deleted in the field maintenance of the matchcode ID!
Removing a secondary table from the ID also removes all the tables linked to the
primary table with this table from the matchcode ID.

Including Secondary Tables
Position the cursor on a base table. Choose Edit →→→→ Choose sec.tab. A dialog box appears listing
the tables linked with the table via foreign key. Select the secondary tables required in the dialog
box. Choose Continue. You return to the maintenance screen. The selected secondary tables are
included in the ID. Save the selection of the secondary tables.

Only transparent tables may be selected for transparent IDs. For performance
reasons, only hierarchical relationships are allowed for the dependent tables of
synchronous matchcodes (update type S).

Deleting Fields
To delete a field, position the cursor on the relevant field and choose Edit →→→→ Delete field.

 SAP AG BC - ABAP Dictionary

Changing Matchcode IDs

December 1999 289

For synchronous matchcode IDs (update type S), key fields should only be deleted if
the remaining fields still uniquely identify the record. Otherwise the synchronous
matchcode maintenance no longer functions correctly. In this case deleted records
can no longer be removed from the matchcode data and the original version is kept
in addition to the revised version for modified records. In this case you must build the
matchcode records again using the matchcode utility.

Inserting Fields
To insert a field, position the cursor on a field that was already entered and choose Edit →→→→ Insert
field. A new line is opened directly above the line containing the cursor. You can make the
necessary entries in this line.

If you change the fields of a matchcode ID of update types A, S or P, you have to convert the
matchcode data. The existing matchcode data is deleted and then rebuilt. If the fields of a
matchcode ID of update type I are changed, the matchcode view on the database is
automatically deleted and built again with the new structure when the ID is activated.

If you inserted fields in a matchcode ID delivered by SAP, this change is kept throughout the
upgrade. After the upgrade, the matchcode ID contains all the fields of the revised version as well
as all the fields of the new version, that is the join of the sets of fields of both versions of the ID is
created during the upgrade.

Changing Data Elements
The system assigns the matchcode field the data element of the corresponding table field. You
can change this data element. This may be necessary, for example, if you want to allocate other
documentation to the matchcode field.

Simply overwrite the name of the data element in the field Data elem. The new data element
must refer to a domain with the same data type and the same length as the original data element.

Changing the Selection Condition
If you change the selection condition of a matchcode ID of update types A, S or P, you must build
the matchcode data again using the matchcode utility.

BC - ABAP Dictionary SAP AG

Converting to Transparent Matchcodes

290 December 1999

Converting to Transparent Matchcodes
Prerequisites
The following requirements must be satisfied so that a physically stored ID (update types A, S or
P) can be converted to transparent storage (update type I).

• All base tables of the ID must be transparent tables.

• No sub-fields may be defined.

When converting a program-driven ID, it might be necessary to adjust application programs (see
Special Features of Program-Driven Matchcodes [Page 267]).

Procedure
1. First delete the matchcode data stored in the database.

 If you wish to convert all physically stored matchcode IDs of a matchcode object to
transparent matchcode IDs, you should delete the matchcode pool from the database.
To do so, go to the database utility from the matchcode object maintenance screen by
selecting Utilities →→→→ Database utility. Then choose Database table →→→→ Delete. The
matchcode pool is deleted from the database.

 If you wish to convert only one physically stored matchcode ID of a matchcode object to
a transparent matchcode ID, you must delete any matchcode data existing for this ID
from the database. To do this, call the matchcode utility with the function DEL. Select
Utilities →→→→ Matchcode data →→→→ Delete in the screen Maintain Matchcode Object
(Attributes). The Matchcode Utility screen appears. Choose Program →→→→ Execute. A list of
all matchcode IDs for the matchcode object is displayed. Select the ID you require from
this list and choose Execute. The matchcode data is deleted.

2. Go to the Maintain Matchcode ID (Attributes) screen.

3. In the field Update type, change the entry to I (transparent storage).

4. Activate the matchcode ID. The matchcode view is created automatically in the database.
The pooled table is then deleted automatically.

5. To support matchcode selection, it may be advisable to create an index. To find out when an
index is required and how to create an index, refer to Creating Matchcode Indexes [Page
282].

See also:
Effect of Conversion on Transparent Matchcodes [Page 291]

 SAP AG BC - ABAP Dictionary

Effect of Conversion on Transparent IDs

December 1999 291

Effect of Conversion on Transparent IDs
The following changes occur when a physically stored matchcode ID is converted to transparent
storage:

Search is case-sensitive
Searching via transparent IDs is case-sensitive. When entering a search condition, a distinction
is made between uppercase and lowercase notation in text fields.

Size of the hit list can be reduced
The hit list displayed as the result of searching with a transparent ID can be a genuine subset of
the hit list found with an equivalent search via a physically stored ID. The reason for this is that
the access with transparent IDs is implemented using an inner join, while, with physically stored
IDs, an outer join is formed.

When you search with a transparent ID, records of the primary table for which there is no
corresponding entry in the foreign key fields of a secondary table are not found.

An ID is used to search for an employee's personnel number on the basis of the
employee's name and department. The base table contains data on the number and
name. The secondary table contains the departments and their employees. There is
no entry in the secondary table for employees who are not assigned to a department.
These employees cannot be found using a transparent ID with the fields for the
number, name, and department. However, if a physically stored ID with the same
structure is used, these employees will be found.

Adjustment of component fields
If component fields were defined for the ID, these definitions must be canceled when an ID is
converted to transparent storage. You can return the output list to its previous format by changing
the layout.

BC - ABAP Dictionary SAP AG

Deactivating Matchcode IDs

292 December 1999

Deactivating Matchcode IDs
In applications, many matchcode IDs are created automatically, but are rarely used in certain
areas. These superfluous IDs could affect system response times.

The Deactivate function in the menu Matchcode ID in the maintenance screen for the attributes
of the matchcode ID allows you to alleviate this problem. Unlike when a matchcode ID is deleted,
the definition of the ID is kept in the ABAP Dictionary when an ID is deactivated. If the ID is
needed at a later time, it can be activated again.

The Deactivate function is only possible for active matchcode IDs. Before a matchcode ID can be
deactivated, the objects in the database belonging to the ID (such as a view or index for IDs of
update type I) are deleted.

Note that the matchcode records of a deactive ID are not automatically adjusted to data changes
for matchcode IDs of update type S. After reactivation, the matchcode records must be rebuilt
using the matchcode utility.

Inactive matchcode IDs are not proposed for selection when you use the F4 help.

Deactivation is a pure customizing function, that is it is not an attribute that can be
transported. If a deactivated matchcode ID is included as part of an upgrade, it will
be active again after the upgrade.

 SAP AG BC - ABAP Dictionary

Deleting Matchcode IDs

December 1999 293

Deleting Matchcode IDs
Prerequisites
You can only delete a matchcode ID once all the corresponding database objects for this ID have
been deleted. You must do the following before you can delete a matchcode ID:

• For matchcode IDs of update type I: Delete the matchcode view on the database. In the
screen Maintain Matchcode ID (Attributes), call the database utility with Utilities →→→→ Database
utility.

• For matchcode IDs of update types A, S and P: Delete the matchcode data built using the
matchcode utility. It is sufficient to delete the matchcode pool from the database using the
database utility.

Procedure
1. Go to the maintenance screen for the attributes of the matchcode ID.

 Choose Matchcode ID →→→→ Delete.

2. A dialog box appears for you to confirm your deletion request.

 Confirm the deletion request.

3. If no more dependent objects exist for the matchcode ID, it will deleted.

Information on the deletion process and on any errors that may have occurred is
recorded in the deletion log. You can display the deletion log with Utilities →→→→ Display log
→→→→ Delete.

It is often better to only deactivate a matchcode ID. Unlike when a matchcode ID is
deleted, the definition of the ID is kept in the ABAP Dictionary when an ID is
deactivated [Page 292]. If the ID is needed at a later time, it can be activated again.

BC - ABAP Dictionary SAP AG

Deleting Matchcode Objects

294 December 1999

Deleting Matchcode Objects
Prerequisites
When you delete a matchcode object, all the IDs for this object are also deleted. Therefore, you
can only delete a matchcode object if all the IDs for the object can also be deleted, that is, no
more database objects exist for these IDs. For example, no more matchcode views may exist in
the database for transparent IDs of the object.

Procedure
1. In the initial screen of the ABAP Dictionary, choose Utilities → Further Dictionary Objects.

 A dialog box appears.

2. Select the object type Matchcode object and enter the name of the matchcode object.

 Check whether database objects still exist for the matchcode IDs of the object before
deleting it.

3. Choose Delete.

The matchcode object and the relevant matchcode IDs are deleted if no more dependent
objects exist for the matchcode IDs belonging to the matchcode object.

 SAP AG BC - ABAP Dictionary

Flight Model

December 1999 295

Flight Model
The flight model is the basis of all the examples in this documentation. All the tables mentioned in
the examples exist in your system, so you can reproduce the examples directly in the system.

The flight model is based on data model BC_TRAVEL, which you can look at in your system
using the Data Modeler.

Procedure for Displaying the Flight Model
1. Go to the initial screen of the ABAP Workbench and choose Development → Data

Modeler.

 The initial screen of the Data Modeler is displayed.

2. Enter BC_TRAVEL in field Modeling object and choose Display.

 The description of the flight model is displayed.

3. You can display the data model as a graphic with Utilities → Graphic.

You can find further information on data modeling and on using the Data Modeler in the
documentation on the Data Modeler [Ext.].

Flight Model (Simplified Representation)

Client

Currency

Flight
schedule

Flight Booking

Business
partner

Travel
agency

Customer

Airline carrier Sales counter

The flight model gives a simple description of seat bookings in passenger airplanes by flight
customers. The booking can be made either at the sales desk of a carrier or at a travel agency.

A flight booking is based on the individual flight connections described in the flight schedule.
There are concrete flights for every flight connection.

BC - ABAP Dictionary SAP AG

Flight Model

296 December 1999

Assigned Tables in the ABAP Dictionary
There is a table in the ABAP Dictionary containing the data of the corresponding entities
(versions of the entity type) for each entity type.

The most important tables of the flight model are:

• T000: Client table

• SCURX: Currencies (key: currency key)

• SBUSPART: Business partner (key: client, partner number)

• STRAVELAG: Travel agencies (key: client, travel agency number)

• SCUSTOM: Customers (key: client, customer number)

• SCARR: Carriers (key: client, carrier ID)

• SCOUNTER: Sales counters (key: client, carrier ID, sales counter number)

• SPFLI: Flight schedule (key: client, carrier ID, connection number)

• SFLIGHT: Flights (key: client, carrier ID, connection number, date of flight)

• SBOOK: Flight bookings (key: client, carrier ID, connection number, date of flight,
booking number, customer number)

Relationships between the Tables
Table SBUSPART contains all the business partners of a carrier. A business partner is identified
by his number in this table. The data of the contact person for the business partner is also stored.
A business partner can be a travel agency or a customer (e.g. company that frequently books
flights directly with the carrier). Different data is required for these two types of business partner.
The data for a travel agency is stored in table STRAVELAG and the data for a customer in table
SCUSTOM. There is therefore an entry with the same key in either table STRAVELAG or table
SCUSTOM for each entry in table SBUSPART.

Table SCARR contains the IDs and names of the carriers. Each carrier has a number of
connections. These flight connections are stored in table SPFLI. Table SFLIGHT contains the
concrete flight data for each connection Bookings can be made for each flight in table SFLIGHT.
The bookings made for each flight are entered in table SBOOK.

The carriers have sales counters in the airports. These sales counters are entered in table
SCOUNTER. The customer number or agency number for which the booking was made is stored
in table SBOOK for each booking. If the customer books his flight directly at a counter, the
counter number is also entered in the booking data in table SBOOK

